RNA editing with CRISPR-Cas13

American Association for the Advancement of Science (AAAS) - Tập 358 Số 6366 - Trang 1019-1027 - 2017
David Cox1,2,3,4,5,6, Jonathan S. Gootenberg1,2,4,7,6, Omar O. Abudayyeh1,2,4,5,6, Brian Franklin1,2,4,6, Max J. Kellner1,2,4,6, Julia Joung1,2,4,6, Feng Zhang1,2,4,6
1Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
2Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
3Department of Biology, MIT, Cambridge, MA 02139, USA
4Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA
5Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
6McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
7Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA

Tóm tắt

Precise transcriptome engineering Efficient and precise RNA editing to correct disease-relevant transcripts holds great promise for treating genetic disease. Cox et al. took advantage of the ability of Cas13b, an effector from a type VI CRISPR-Cas system, to target specific RNAs directly (see the Perspective by Yang and Chen). They fused Cas13b with the ADAR2 adenosine deaminase domain and used rational protein engineering to improve the resultant enzyme. These approaches yielded an RNA knockdown and editing platform that allowed efficient and specific RNA depletion and correction in mammalian cells. Science , this issue p. 1019 ; see also p. 996

Từ khóa


Tài liệu tham khảo

10.1016/j.cell.2014.05.010

10.1016/j.cell.2016.10.044

10.1126/science.1231143

10.1126/science.1232033

10.1016/j.cell.2015.09.038

10.1038/nrg3686

10.1038/nature17946

10.1126/science.aaf8729

10.1038/nbt.3803

10.1126/science.aaf5573

10.1016/j.molcel.2015.10.008

10.1038/nrmicro.2016.184

10.1016/j.molcel.2016.12.023

10.1126/science.aam9321

10.1038/nature24049

10.1146/annurev-biochem-060208-105251

10.1038/nature24041

10.1016/0092-8674(88)90253-X

10.1038/nsmb.3203

Y. Zheng, C. Lorenzo, P. A. Beal, DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. 45, 3369–3377 (2017). 28132026

10.1073/pnas.1212548109

10.1017/S135583820101007X

10.1038/srep41478

10.1073/pnas.1306243110

M. F. Montiel-González, I. C. Vallecillo-Viejo, J. J. Rosenthal, An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016). 27557710

J. Wettengel, P. Reautschnig, S. Geisler, P. J. Kahle, T. Stafforst, Harnessing human ADAR2 for RNA repair - Recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797–2808 (2017). 27907896

10.1021/acschembio.5b00711

10.1021/bi001383g

10.1002/anie.201206489

10.1038/nrn2194

10.1038/jid.2010.214

10.1038/ng.644

10.1038/nprot.2017.016

10.1186/1471-2105-12-323

10.1002/0471250953.bi1212s49

10.1093/bioinformatics/btt287

10.1093/bioinformatics/btr540

J. D. Watson Molecular Biology of the Gene (Pearson Boston ed. 7 2014).