Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states

The Journal of Mathematical Neuroscience - Tập 1 - Trang 1-33 - 2011
María J Cáceres1, José A Carrillo2, Benoît Perthame3,4
1Departamento de Matemática Aplicada, Universidad de Granada, Granada, Spain
2ICREA and Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
3Laboratoire Jacques-Louis Lions UPMC, Paris, France
4Institut Universitaire de France, Paris, France

Tóm tắt

Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter. AMS Subject Classification:35K60, 82C31, 92B20.

Tài liệu tham khảo

Lapicque L: Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen. 1907, 9: 620–635. Tuckwell H: Introduction to Theoretical Neurobiology. Cambridge Univ. Press, Cambridge; 1988. Brunel N, Hakim V: Fast global oscillations in networks of integrate-and-fire neurons with long fiting rates. Neural Comput. 1999, 11: 1621–1671. 10.1162/089976699300016179 Brunel N: Dynamics of sparsely connected networks of excitatory and inhibitory spiking networks. J. Comput. Neurosci. 2000, 8: 183–208. 10.1023/A:1008925309027 Renart, A., Brunel, N., Wang, X.-J.: Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. In: Feng, J. (ed.) Computational Neuroscience: A Comprehensive Approach. Mathematical Biology and Medicine Series. Chapman & Hall/CRC (2004) Compte A, Brunel N, Goldman-Rakic PS, Wang X-J: Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 2000, 10: 910–923. 10.1093/cercor/10.9.910 Sirovich L, Omurtag A, Lubliner K: Dynamics of neural populations: stability and synchrony. Network 2006, 17: 3–29. 10.1080/09548980500421154 Omurtag A, Knight BW, Sirovich L: On the simulation of large populations of neurons. J. Comput. Neurosci. 2000, 8: 51–63. 10.1023/A:1008964915724 Mattia M, Del Giudice P: Population dynamics of interacting spiking neurons. Phys. Rev. E 2002., 66: Guillamon T: An introduction to the mathematics of neural activity. Butl. Soc. Catalana Mat. 2004, 19: 25–45. Risken H: The Fokker-Planck Equation: Methods of solution and applications. Springer-Verlag, Berlin; 1989. Burkholder, D.L., Pardoux, É., Sznitman, A.: École d’Été de Probabilités de Saint-Flour XIX—1989. In: Hennequin, P. L. (ed.) Lecture Notes in Mathematics, vol. 1464. Springer-Verlag, Berlin (1991). Papers from the school held in Saint-Flour, August 16–September 2, 1989 Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Math. Mod. Meth. Appl. Sci. (2011, in press) Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Math. Mod. Meth. Appl. Sci. (2011, in press) Newhall K, Kovačič G, Kramer P, Rangan AV, Cai D: Cascade-induced synchrony in stochastically-driven neuronal networks. Phys. Rev. E 2010., 82: Newhall K, Kovačič G, Kramer P, Zhou D, Rangan A, Cai D: Dynamics of current-based, poisson driven, integrate-and-fire neuronal networks. Commun. Math. Sci. 2010, 8: 541–600. Gerstner W, Kistler W: Spiking Neuron Models. Press Cambridge, Cambridge Univ.; 2002. Brette R, Gerstner W: Adaptive exponential integrate-and-fire model as an effective description of neural activity. J. Neurophysiol. 2005, 94: 3637–3642. 10.1152/jn.00686.2005 Touboul J: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J. Appl. Math. 2008, 68: 1045–1079. 10.1137/070687268 Touboul J: Importance of the cutoff value in the quadratic adaptive integrate-and-fire model. Neural Comput. 2009, 21: 2114–2122. 10.1162/neco.2009.09-08-853 Cáceres MJ, Carrillo JA, Tao L: A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics. J. Comput. Phys. 2011, 230: 1084–1099. 10.1016/j.jcp.2010.10.027 Pham J, Pakdaman K, Champaguaf C, Vivert J-F: Activity in sparsely connected excitatory neural networks: effect of connectivity. Neural Netw. 1998, 11: 415–434. 10.1016/S0893-6080(97)00153-6 Pakdaman K, Perthame B, Salort D: Dynamics of a structured neuron population. Nonlinearity 2010, 23: 55–75. 10.1088/0951-7715/23/1/003 Gray CM, Singer W: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 1989, 86: 1698–1702. 10.1073/pnas.86.5.1698 Moreno-Bote R, Rinzel J, Rubin N: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 2007, 98: 1125–1139. 10.1152/jn.00116.2007 Albantakis L, Deco G: The encoding of alternatives in multiple-choice decision making. Proc. Natl. Acad. Sci. USA 2009, 106: 10308–10313. 10.1073/pnas.0901621106 Blanchet A, Dolbeault J, Perthame B: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 44: 1–33. (electronic) (electronic) Corrias L, Perthame B, Zaag H: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 2004, 72: 1–28. 10.1007/s00032-003-0026-x González MdM, Gualdani MP: Asymptotics for a symmetric equation in price formation. Appl. Math. Optim. 2009, 59: 233–246. 10.1007/s00245-008-9052-y Michel P, Mischler S, Perthame B: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 2005, 84: 1235–1260. 10.1016/j.matpur.2005.04.001 Shu, C.-W.: Essentially non-oscillatory and weighted esentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., Quarteroni, A. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1697, pp. 325–432. Springer (1998) Buet C, Cordier S, Dos Santos V: A conservative and entropy scheme for a simplified model of granular media. Transp. Theory Stat. Phys. 2004, 33: 125–155. 10.1081/TT-120037804 Ledoux M: The Concentration of Measure Phenomenon. 2001. Barthe F, Roberto C: Modified logarithmic Sobolev inequalities on . Potential Anal. 2008, 29: 167–193. 10.1007/s11118-008-9093-5