The slow motion of slender rod-like particles in a second-order fluid

Journal of Fluid Mechanics - Tập 69 Số 2 - Trang 305-337 - 1975
L. Gary Leal1
1Chemical Engineering, California Institute of Technology, Pasadena

Tóm tắt

The motion of a slender axisymmetric rod-like particle is investigated theoretically for translation through a quiescent second-order fluid and for rotation in a simple shear flow of the same material. The analysis consists of an asymptotic expansion about the limit of rheologically slow flow, coupled with an application of a generalized form of the reciprocal theorem of Lorentz to calculate the force and torque on the particle. It is shown that an arbitrarily oriented particle with fore-aft symmetry translates, to a first approximation, at the same rate as in an equivalent Newtonian fluid, but that the motion of particles with no fore-aft symmetry may be modified at the same level of approximation. In addition, it is found that freely translating particles with fore-aft symmetry exhibit a single stable orientation with the axis of revolution vertical. In simple shear flow at small and moderate shear rates, the non-Newtonian nature of the suspending fluid causes a drift through Jeffery orbits to the equilibrium orbit C = 0 in which the particle rotates about its axis of revolution. At larger shear rates, the particle aligns itself in the direction of flow and ceases to rotate. Comparison with the available experimental data indicates that the measured rate of orbit drift may be used to determine the second normal stress difference parameter of the second-order fluid model. Finally, in an appendix, some preliminary observations are reported of the motion of slender rod-like particles falling through a quiescent viscoelastic fluid.

Từ khóa


Tài liệu tham khảo

Skoog, J. , Leal, L. G. & Acrivos, A. 1971 J. Chem. Engng,49,569.

Hinch, E. J. & Leal, L. G. 1972 J. Fluid Mech. 52,683.

Cox, R. G. 1970b J. Fluid Mech. 45,625.

Bartram, E. & Mason, S. G. 1974 To be published.

Tanner, R. I. 1970 Trans. Soc. Rheol. 14,483.

Tillett, J. P. K. 1970 J. Fluid Mech. 44,401.

Karnis, A. & Mason, S. G. 1967 Trans. Soc. Rheol. 10,571.

Wales, J. L. S. & Philippoff, W. 1973 Rheol. Acta,12,25.

Bruce, C. & Schwarz, W. H. 1969 J. Polymer Sci. 7,909.

Mestre, N. J. DE 1973 J. Fluid Mech. 58,641.

Brindley, G. & Broadbent, J. M. 1973 Rheol. Acta,12,48.

Giesekus, H. 1963 Rheol. Acta,3,59.

Batchelor, G. K. 1970 J. Fluid Mech. 44,419.

Caswell, B. & Schwarz, W. H. 1962 J. Fluid Mech. 13,417.

Cox, R. G. & Brenner, H. 1968 Chem. Engng Sci. 23,147.

Frankel, N. A. & Acrivos, A. 1970 J. Fluid Mech. 44,65.

Gauthier, F. , Goldsmith, H. L. & Mason, S. G. 1971 Rheol. Acta,10,344.

Ho, B. P. & Leal, L. G. 1974 J. Fluid Mech. 65,365.

Jeffery, G. B. 1922 Proc. Roy. Soc. A,102,161.

Leal, L. G. & Hinch, E. J. 1971 J. Fluid Mech. 46,685.

Saffman, P. G. 1956 J. Fluid Mech. 1,540.

Leal, L. G. & Hinch, E. J. 1972 J. Fluid Mech. 55,745.

Leslie, F. M. 1961 Quart. J. Mech. Appl. Math. 14,36.

Olabisi, O. & Williams, M. C. 1972 Trans. Soc. Rheol. 16,727.

Lin, C. , Peery, J. H. & Schowalter, W. R. 1970 J. Fluid Mech. 44,1.

Weissenberg, K. 1947 Nature,159,310.

Cox, R. G. 1970a J. Fluid Mech. 44,791.