The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

Genome Biology - Tập 8 - Trang 1-16 - 2007
Da Wei Huang1, Brad T Sherman1, Qina Tan1, Jack R Collins2, W Gregory Alvord3, Jean Roayaei3, Robert Stephens2, Michael W Baseler4, H Clifford Lane5, Richard A Lempicki1
1Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, USA
2Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, USA
3Computer and Statistical Services, Data Management Services, National Cancer Institute at Frederick, Frederick, USA
4Clinical Services Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, USA
5Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA

Tóm tắt

The DAVID Gene Functional Classification Tool http://david.abcc.ncifcrf.gov uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context.

Tài liệu tham khảo

Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: P3- Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol. 2003, 4: R70- Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004, 20: 1464-1465. Al-Shahrour F, Diaz-Uriarte R, Dopazo J: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 2004, 20: 578-580. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B: GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol. 2004, 5: R101- Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo J: BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 2005, 33: W460-464. Castillo-Davis CI, Hartl DL: GeneMerge - post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003, 19: 891-892. Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, Wong WH: GoSurfer: a graphical interactive tool for comparative analysis of large gene sets in gene ontologytrade mark space. Appl Bioinformatics. 2004, 3: 261-264. Zhang B, Schmoyer D, Kirov S, Snoddy J: GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics. 2004, 5: 16- Shah NH, Fedoroff NV: CLENCH: a program for calculating Cluster ENriCHment using the Gene Ontology. Bioinformatics. 2004, 20: 1196-1197. Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA: Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res. 2003, 31: 3775-3781. Khatri P, Bhavsar P, Bawa G, Draghici S: Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res. 2004, 32: W449-456. Sharan R, Maron-Katz A, Shamir R: CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics. 2003, 19: 1787-1799. Liu H, Hu ZZ, Wu CH: DynGO: a tool for visualizing and mining of Gene Ontology and its associations. BMC Bioinformatics. 2005, 6: 201- Lee JS, Katari G, Sachidanandam R: GObar: a gene ontology based analysis and visualization tool for gene sets. BMC Bioinformatics. 2005, 6: 189- Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, Reimers M, Stephens RM, Bryant D, Burt SK, et al: High-throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of common variable immune deficiency (CVID). BMC Bioinformatics. 2005, 6: 168- Khatri P, Draghici S: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics. 2005, 21: 3587-3595. Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005, 21: 3448-3449. Berriz GF, King OD, Bryant B, Sander C, Roth FP: Characterizing gene sets with FuncAssociate. Bioinformatics. 2003, 19: 2502-2504. Ben-Shaul Y, Bergman H, Soreq H: Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression. Bioinformatics. 2005, 21: 1129-1137. Zhong S, Tian L, Li C, Storch KF, Wong WH: Comparative analysis of gene sets in the Gene Ontology space under the multiple hypothesis testing framework. Proc IEEE Comput Syst Bioinform Conf. 2004, 425-435. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR: MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 2003, 4: R7- Cheng J, Sun S, Tracy A, Hubbell E, Morris J, Valmeekam V, Kimbrough A, Cline MS, Liu G, Shigeta R, et al: NetAffx Gene Ontology Mining Tool: a visual approach for microarray data analysis. Bioinformatics. 2004, 20: 1462-1463. Robinson PN, Wollstein A, Bohme U, Beattie B: Ontologizing gene-expression microarray data: characterizing clusters with Gene Ontology. Bioinformatics. 2004, 20: 979-981. Bluthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D: Biological profiling of gene groups utilizing Gene Ontology. Genome Inform. 2005, 16: 106-115. DAVID Home Page. [http://david.abcc.ncifcrf.gov] DAVID Gene Functional Classification Tool. [http://david.abcc.ncifcrf.gov/gene2gene.jsp] DAVID Functional Annotation Clustering. [http://david.abcc.ncifcrf.gov/summary.jsp] DAVID Knowledgebase. [http://david.abcc.ncifcrf.gov/content.jsp?file=/knowledgebase/DAVID_knowledgebase.html] Cohen J: A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960, 20: 37-46. Byrt T, Bishop J, Carlin JB: Bias, prevalence and kappa. J Clin Epidemiol. 1993, 46: 423-429. Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006, 22: 1600-1607. Grossmann S, Buaer S, Robinson PN, Vingron M: An improved statistic for detecting over-represented Gene Ontology annotations in gene sets. Res Comput Mol Biol. 2006, 3909: 85-98. Bader GD, Betel D, Hogue CW: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003, 31: 248-250. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998, 9: 3273-3297. Lee HK, Braynen W, Keshav K, Pavlidis P: ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics. 2005, 6: 269- Nam D, Kim SB, Kim SK, Yang S, Kim SY, Chu IS: ADGO: analysis of differentially expressed gene sets using composite GO annotation. Bioinformatics. 2006, 22: 2249-2253. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A: GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007, 8: R3- Cicala C, Arthos J, Selig SM, Dennis G, Hosack DA, Van Ryk D, Spangler ML, Steenbeke TD, Khazanie P, Gupta N, et al: HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc Natl Acad Sci USA. 2002, 99: 9380-9385. Affymetrix. [http://www.affymetrix.com/products/arrays/specific/hgu95.affx] Clayton F, Kapetanovic S, Kotler DP: Enteric microtubule depolymerization in HIV infection: a possible cause of HIV-associated enteropathy. Aids. 2001, 15: 123-124. Isel C, Karn J: Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J Mol Biol. 1999, 290: 929-941.