Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers

Springer Science and Business Media LLC - Tập 5 - Trang 1-10 - 2010
Rakez Kayed1,2, Isabel Canto1,3, Leonid Breydo1, Suhail Rasool1, Tamas Lukacsovich4, Jessica Wu1, Ricardo Albay1, Anna Pensalfini1, Stephen Yeung1, Elizabeth Head5, J Lawrence Marsh4, Charles Glabe1
1Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
2Department of Neurology, University of Texas Medical Branch, Galveston, USA
3Department of Pharmacology, University of California San Diego, La Jolla, USA
4Departments of Developmental and Cell Biology, Pharmacology and the Developmental Biology Center, University of California, Irvine, USA
5Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA

Tóm tắt

Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates. We have produced several monoclonal antibodies that specifically recognize prefibrillar oligomers and do not recognize amyloid fibrils, monomer or natively folded proteins. Like the polyclonal antisera, the individual monoclonals recognize generic epitopes that do not depend on a specific linear amino acid sequence, but they display distinct preferences for different subsets of prefibrillar oligomers. Immunological analysis of a number of different prefibrillar Aβ oligomer preparations show that structural polymorphisms exist in Aβ prefibrillar oligomers that can be distinguished on the basis of their reactivity with monoclonal antibodies. Western blot analysis demonstrates that the conformers defined by the monoclonal antibodies have distinct size distributions, indicating that oligomer structure varies with size. The different conformational types of Aβ prefibrillar oligomers can serve as they serve as templates for monomer addition, indicating that they seed the conversion of Aβ monomer into more prefibrillar oligomers of the same type. These results indicate that distinct structural variants or conformers of prefibrillar Aβ oligomers exist that are capable of seeding their own replication. These conformers may be analogous to different strains of prions.

Tài liệu tham khảo

Terry RD: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol. 1996, 55 (10): 1023-1025. Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH: The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci. 2002, 22 (5): 1858-1867. Billings LM, Oddo S, Green KN, McGaugh JL, Laferla FM: Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron. 2005, 45 (5): 675-688. 10.1016/j.neuron.2005.01.040. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Annals of Neurology. 1999, 46 (6): 860-866. 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. American Journal of Pathology. 1999, 155 (3): 853-862. Baglioni S, Casamenti F, Bucciantini M, Luheshi LM, Taddei N, Chiti F, Dobson CM, Stefani M: Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci. 2006, 26 (31): 8160-8167. 10.1523/JNEUROSCI.4809-05.2006. Haass C, Selkoe DJ: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007, 8 (2): 101-112. 10.1038/nrm2101. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003, 300 (5618): 486-489. 10.1126/science.1079469. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, et al: Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2007, 2 (18): 18.-10.1186/1750-1326-2-18. Wu JW, Breydo L, Isas JM, Lee J, Kuznetsov YG, Langen R, Glabe C: Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid {beta} but Do Not Seed Fibril Formation. J Biol Chem. 2010, 285 (9): 6071-6079. 10.1074/jbc.M109.069542. Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C: Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem. 2009, 284 (7): 4230-4237. 10.1074/jbc.M808591200. Tycko R: Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys. 2006, 39 (1): 1-55. 10.1017/S0033583506004173. Margittai M, Langen R: Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys. 2008, 41 (3-4): 265-297. 10.1017/S0033583508004733. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R: Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science. 2005, 307 (5707): 262-265. 10.1126/science.1105850. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R: 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA. 2005, 102 (48): 17342-17347. 10.1073/pnas.0506723102. Kodali R, Williams AD, Chemuru S, Wetzel R: Abeta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol. 2010, 401 (3): 503-517. 10.1016/j.jmb.2010.06.023. Paravastu AK, Leapman RD, Yau WM, Tycko R: Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci USA. 2008, 105 (47): 18349-18354. 10.1073/pnas.0806270105. Shewmaker F, Wickner RB, Tycko R: Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA. 2006, 103 (52): 19754-19759. 10.1073/pnas.0609638103. Wickner RB, Dyda F, Tycko R: Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure. Proc Natl Acad Sci USA. 2008, 105 (7): 2403-2408. 10.1073/pnas.0712032105. Shewmaker F, Kryndushkin D, Chen B, Tycko R, Wickner RB: Two prion variants of Sup35p have in-register parallel beta-sheet structures, independent of hydration. Biochemistry. 2009, 48 (23): 5074-5082. 10.1021/bi900345q. Török M, Milton S, Kayed R, Wu P, McIntire T, Glabe CC, Langen R: Structural and dynamic features of Alzheimer's Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem. 2002, 13: 13- Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrene YF, Narayanaswami V, Goormaghtigh E, Ruysschaert JM, Raussens V: Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem J. 2009, 421 (3): 415-423. 10.1042/BJ20090379. Toyama BH, Kelly MJ, Gross JD, Weissman JS: The structural basis of yeast prion strain variants. Nature. 2007, 449 (7159): 233-237. 10.1038/nature06108. Tanaka M, Collins SR, Toyama BH, Weissman JS: The physical basis of how prion conformations determine strain phenotypes. Nature. 2006, 442 (7102): 585-589. 10.1038/nature04922. Gerber R, Tahiri-Alaoui A, Hore PJ, James W: Oligomerization of the human prion protein proceeds via a molten globule intermediate. J Biol Chem. 2007, 282 (9): 6300-6307. 10.1074/jbc.M608926200. Campioni S, Mossuto MF, Torrassa S, Calloni G, de Laureto PP, Relini A, Fontana A, Chiti F: Conformational properties of the aggregation precursor state of HypF-N. J Mol Biol. 2008, 379 (3): 554-567. 10.1016/j.jmb.2008.04.002. Liang Y, Lynn DG, Berland KM: Direct observation of nucleation and growth in amyloid self-assembly. J Am Chem Soc. 132 (18): 6306-6308. 10.1021/ja910964c. Cheon M, Chang I, Mohanty S, Luheshi LM, Dobson CM, Vendruscolo M, Favrin G: Structural reorganisation and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comput Biol. 2007, 3 (9): 1727-1738. 10.1371/journal.pcbi.0030173. Hansen LA, Masliah E, Terry RD, Mirra SS: A neuropathological subset of Alzheimer's disease with concomitant Lewy body disease and spongiform change. Acta Neuropathol (Berl). 1989, 78: 194-201. 10.1007/BF00688209. Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A: Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988, 23 (2): 138-144. 10.1002/ana.410230206.