Stabilization of Cowell's method

E. Stiefel1,2, D. G. Bettis1
1Yale University Observatory, New Haven
2Eidgenössische Technische Hochschule, Institut für Angewandte Mathematik, Zürich, Schweiz

Tóm tắt

This paper offers a modification of the Cowell method for the integration of orbits. The modification is characterized by the property that it will integrate unperturbed Kepler motion exactly (excluding truncation errors), thus the slight instability of the Cowell Method is avoided. Furthermore, the modification takes into account the most important secular effects of orbit motion. As an example of the applicability of the modified method to perturbed motion, the equations of motion of an artificial earth satellite are integrated. In the case of elliptic initial conditions regularization by a Levi-Civita transformation was used.

Từ khóa


Tài liệu tham khảo

Brouwer, D., andG. M. Clemence: Methods of celestial mechanics, Chap. IV,12 New York: Academic Press 1961.

Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math.3, 381–397 (1961).

Interpolation and Allied Tables. London: Her Majesty's Stationery Office 1956.

Kustaanheimo, P., andE. Stiefel: Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik218, 204–219 (1965)

Salzer, H. E.: Trigonometric interpolation and predictor-corrector formulas for numerical integration. Zeitschrift für Angewandte Mathematik und Mechanik42, 403–412 (1962).

Stiefel, E., M. Rossler, J. Waldvogel, andC. A. Burdet: Methods of regularization for computing orbits in celestial mechanics. NASA Contractor Report, NASA CR-769 (1967).

Szebehely, V.: Theory of orbits, the restricted problem of three bodies, Chap. III and X, 2.5. New York: Academic Press 1967.