The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes
Tóm tắt
The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis. We identified 110 proteins as components of sea urchin test and spine organic matrix. Fourty of these proteins occurred in both compartments while others were unique to their respective compartment. More than 95% of the proteins were detected in sea urchin skeletal matrices for the first time. The most abundant protein in both matrices was the previously characterized spicule matrix protein SM50, but at least eight other members of this group, many of them only known as conceptual translation products previously, were identified by mass spectrometric sequence analysis of peptides derived from in vitro matrix degradation. The matrices also contained proteins implicated in biomineralization processes previously by inhibition studies using antibodies or specific enzyme inhibitors, such as matrix metalloproteases and members of the mesenchyme-specific MSP130 family. Other components were carbonic anhydrase, collagens, echinonectin, a α2-macroglobulin-like protein and several proteins containing scavenger receptor cysteine-rich domains. A few possible signal transduction pathway components, such as GTP-binding proteins, a semaphorin and a possible tyrosine kinase were also identified. This report presents the most comprehensive list of sea urchin skeletal matrix proteins available at present. The complex mixture of proteins identified in matrices of the sea urchin skeleton may reflect many different aspects of the mineralization process. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Considering the many newly identified matrix proteins, this proteomic study may serve as a road map for the further exploration of biomineralization processes in an important model organism.
Từ khóa
Tài liệu tham khảo
Addadi L, Weiner S: Control and design principles in biological mineralization. Angew Chem Int Ed Engl 1992, 31: 153–169. 10.1002/anie.199201531
Weiner S, Addadi L: Design strategies in mineralized biological materials. J Mater 1997, 7: 689–702.
Wilt FH: Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 2005, 280: 15–25. 10.1016/j.ydbio.2005.01.019
Heatfield BM, Travis DF: Ultrastructural studies of regenerating spines of the sea urchin. Strongylocentrotus purpuratus 1975, 145: 13–50.
Märkel K, Röser U: The spine tissues of the echinoid Eucidaris tribuloides . Zoomorphology 1983, 103: 25–41. 10.1007/BF00312056
Märkel K, Röser U: Calcite-resorption in the spine of the echinoid Eucidaris tribuloides . Zoomorphology 1983, 103: 43–58. 10.1007/BF00312057
Wilt FH, Killian CE, Livingston BT: Development of calcareous skeletal elements in invertebrates. Differentiation 2003, 71: 237–250. 10.1046/j.1432-0436.2003.7104501.x
Wilt FH: Matrix and mineral in the sea urchin larval skeleton. J Struc Biol 1999, 126: 216–226. 10.1006/jsbi.1999.4105
Wilt FH: Biomineralization of the spicules of sea urchin embryos. Zool Sci 2002, 19: 253–261. 10.2108/zsj.19.253
Wilt FH, Ettensohn CA: The morphogenesis and biomineralization of the sea urchin larval skeleton. In Handbook of Biomineralization. Edited by: Bäuerlein E. Weinheim: Wiley-VCH; 2007:183–210.
Beniash E, Addadi L, Weiner S: Cellular control over spicule formation in sea urchin embryos. A structural approach. J Struct Biol 1999, 125: 50–62. 10.1006/jsbi.1998.4081
Märkel K, Röser U, Stauber M: On the ultrastructure and the supposed function of the mineralizing matrix coat of sea urchins (Echinodermata, Echinoidea). Zoomorphology 1989, 109: 79–87. 10.1007/BF00312313
Politi Y, Arad T, Klein E, Weiner S, Addadi L: Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 2004, 306: 1161–1164. 10.1126/science.1102289
Killian CE, Wilt FH: Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J Biol Chem 1996, 271: 9150–9159. 10.1074/jbc.271.15.9150
Richardson W, Kitajima T, Wilt FH, Benson S: Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins. Dev Biol 1989, 132: 266–269. 10.1016/0012-1606(89)90222-4
Harkey MA, Klueg K, Sheppard P, Raff RA: Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. Dev Biol 1995, 168: 549–566. 10.1006/dbio.1995.1101
Ameye L, Hermann R, Killian CE, Wilt FH, Dubois P: Ultrastructural localization of proteins involved in sea urchin biomineralization. J Histochem Cytochem 1999, 47: 1189–1200.
Borelli G, Mayer-Gostan N, Merle PL, De Pontual H, Boeuf G, Allemand D, Payan P: Composition of biomineral organic matrices with special emphasis on Turbot ( Psetta maxima ) otolith and endolymph. Calcif Tissue Int 2003, 72: 717–725. 10.1007/s00223-001-2115-6
Livingston BT, Killian CE, Wilt FH, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA: A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus . Dev Biol 2006, 300: 335–348. 10.1016/j.ydbio.2006.07.047
Sea Urchin Genome Sequencing Consortium: The genome of the sea urchin Strongylocentrotus purpuratus . Science 2006, 314: 941–952. 10.1126/science.1133609
Shevchenko A, Tomas H, Havlič J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2006, 1: 2856–2860. 10.1038/nprot.2006.468
Rappsilber J, Ishihama Y, Mann M: Stop and Go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 2003, 75: 663–670. 10.1021/ac026117i
Olsen JV, Mann M: Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc Natl Acad Sci 2004, 101: 13417–13422. 10.1073/pnas.0405549101
Klein C, Aivaliotis M, Olsen JV, Falb M, Besir H, Scheffer B, Bisle B, Tebbe A, Konstantinidis K, Siedler F, Pfeiffer F, Mann M, Oesterhelt D: The low molecular weight proteome of Halobacterium salinarum . J Proteome Res 2007, 6: 1510–1518. 10.1021/pr060634q
Olsen JV, De Godoy LMF, Li G, Maček B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M: Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005, 4: 2010–2021. 10.1074/mcp.T500030-MCP200
Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G: A global view of sea urchin expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 2007, 8: 1–18. 10.1186/gb-2007-8-5-r85
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 2005,4(9):1265–1272. 10.1074/mcp.M500061-MCP200
Marchler-Bauer A, Bryant SH: CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004, 32: W327-W331. 10.1093/nar/gkh454
Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, De Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA: The 20 years of PROSITE. Nucl Acids Res 2008, 36: D245-D249. 10.1093/nar/gkm977
Mann K, Maček B, Olsen JV: Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 2006, 6: 3801–3810. 10.1002/pmic.200600120
Mann K: The chicken egg white proteome. Proteomics 2007, 7: 3558–3568. 10.1002/pmic.200700397
Illies MR, Peeler MT, Dechtiaruk AM, Ettensohn CA: Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus . Dev Genes Evol 2002, 212: 419–431. 10.1007/s00427-002-0261-0
George NC, Killian CE, Wilt FH: Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein. Dev Biol 1991, 157: 334–342. 10.1016/0012-1606(91)90291-A
Kitajima T, Tomita M, Killian CE, Akasara K, Wilt FH: Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus . Develop Growth Differ 1996, 38: 687–695. 10.1046/j.1440-169X.1996.t01-5-00012.x
Mann K, Weiss IM, André S, Gabius H-J, Fritz M: The amino acid sequence of the abalone ( Haliotis laevigata ) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur J Biochem 2000, 267: 5257–5264. 10.1046/j.1432-1327.2000.01602.x
Chow G, Benson SC: Carbonic anhydrase activity in developing sea urchin embryos. Exp Cell Res 1979, 124: 451–453. 10.1016/0014-4827(79)90223-4
Shimidzu K, Amemiya S, Yoshizato K: Biochemical and immunological characterization of collagen molecules from echithuroid sea urchin Asthenosoma ijimai . Biochim Biophys Acta 1990, 1038: 39–46.
Omura Y, Urano N, Kimura S: Occurrence of fibrillar collagen with structure of (α1)2 α2 in the test of the sea urchin Astenosoma ijimai . Comp Biochem Physiol 1996, 115B: 63–68.
Nagai T, Suzuki N: Partial characterization of collagen from purple sea urchin (Anthocidaris crassispina) test. Int J Food Sci Technol 2000, 35: 497–501. 10.1046/j.1365-2621.2000.00406.x
Exposito J-Y, Boute N, Deleage G, Garrone R: Characterization of two genes coding for a similar four-cysteine motif of the amino-terminal propeptide of a sea urchin fibrillar collagen. Eur J Biochem 1995, 234: 59–65. 10.1111/j.1432-1033.1995.059_c.x
Exposito J-Y, D'Alessio M, Solursh M, Ramirez F: Sea urchin collagen evolutionarily homologous to vertebrate pro-α2(I) collagen. J Biol Chem 1992, 267: 15559–15562.
Exposito J-Y, D'Alessio M, Ramirez F: Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. J Biol Chem 1992, 267: 17404–17408.
Mann K, Gaill F, Timpl R: Amino acid sequence and cell-adhesion activity of a fibril-forming collagen from the tube worm Riftia pachyptila living at deep sea hydrothermal vents. Eur J Biochem 1992, 210: 839–847. 10.1111/j.1432-1033.1992.tb17487.x
Leaf DS, Anstrom JA, Chin JE, Harkey MA, Showman RM, Raff RA: Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev Biol 1987, 121: 29–40. 10.1016/0012-1606(87)90135-7
Parr BA, Parks AL, Raff RA: Promoter structure and protein sequence of msp130, a lipid-anchored sea urchin glycoprotein. J Biol Chem 1990, 265: 1408–1413.
Farach MC, Valdizan M, Park HR, Decker GL, Lennarz WJ: Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryo. Dev Biol 1987, 122: 320–331. 10.1016/0012-1606(87)90297-1
Farach-Carson MC, Carson DD, Collier JL, Lennarz WJ, Park HR, Wright GC: A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin skeleton. J Cell Biol 1989, 109: 1289–1299. 10.1083/jcb.109.3.1289
Brown MF, Partin JS, Killian CE, Lennarz WJ: Spiculogenesis in the sea urchin embryo: Studies on the SM30 spicule matrix protein. Develop Growth Differ 1995, 37: 69–78. 10.1046/j.1440-169X.1995.00008.x
Angerer L, Hussain S, Wei Z, Livingston BT: Sea urchin metalloproteinases: A genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev Biol 2006, 300: 267–281. 10.1016/j.ydbio.2006.07.046
Roe JL, Park HR, Strittmatter WJ, Lennarz WJ: Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells. Exp Cell Res 1989, 181: 542–550. 10.1016/0014-4827(89)90110-9
Ingersoll EP, Wilt FH: Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. Dev Biol 1998, 196: 95–106. 10.1006/dbio.1998.8857
Ingersoll EP, McDonald KL, Wilt FH: Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells. J Exp Zool 2003, 300A: 101–112. 10.1002/jez.a.10316
Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T: FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis of the skeleton and regulate gastrulation during sea urchin development. Development 2008, 135: 353–365. 10.1242/dev.014282
Lapraz F, Röttinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka AJ, McClay D, Angerer L, Gache C, Lepage T: RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev Biol 2006, 300: 132–152. 10.1016/j.ydbio.2006.08.048
Alliegro MC, Alliegro MA: The structure and activities of echinonectin: A developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity. Glycobiology 1991, 1: 253–256. 10.1093/glycob/1.3.253
Alliegro MC, Alliegro MA: Echinonectin is a Del-1-like molecule with regulated expression in sea urchin embryos. Gene Expression Patterns 2007, 7: 651–656. 10.1016/j.modgep.2007.03.006
Zito F, Tesoro V, McClay DR, Nakano E, Matranga V: Ectoderm-ECM interaction is essential for sea urchin embryo skeletogenesis. Dev Biol 1998, 196: 184–192. 10.1006/dbio.1998.8866
Sheers MS, Ettensohn CA: P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Dev Biol 2005, 283: 384–396. 10.1016/j.ydbio.2005.02.037
Whittaker CA, Bergeron K-F, Whittle J, Brandhorst BP, Burke RD, Hynes RO: The echinoderm adhesome. Dev Biol 2006, 300: 252–266. 10.1016/j.ydbio.2006.07.044