Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels

Shlomo P. Neuman1, Elizabeth A. Jacobson1
1Department of Hydrology and Water Resources, University of Arizona, Tucson, USA

Tóm tắt

A method for obtaining pointwise or spatially averaged estimates of a nonintrinsic function is introduced based on residual kriging. The method relies on a stepwise iterative regression process for simultaneously estimating the global drift and residual semivariogram. Estimates of the function are then obtained by solving a modified set of simple kriging equations written for the residuals. The modification consists of replacing the true variogram in the kriging equations by the variogram of the residual estimates as obtained from the iterative regression process. The method is illustrated by considering groundwater levels in an Arizona aquifer. The results are compared with those obtained for the aquifer by the generalized covariance package BLUEPACK-3D.

Tài liệu tham khảo

Beucher, H., Delhomme, J. P., and de Marsily, G., 1981, Analyse stochastique des proprietes des systems poreux naturels heterogenes: Centre d'Informatique Geologique, Ecole des Mines de Paris, Fontainebleau, France, 115 p. Binsariti, A. A., 1980, Statistical analysis and stochastic modeling of the Cortaro aquifer in southern Arizona: Unpublished Ph.D. dissertation, Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, 243 p. Chiles, J. P., 1977, Geostatistique des phenomenes non stationnaires: Unpublished Docteur-Ingenieur thesis, University of Nancy, France. Clifton, P. M., 1981, Statistical inverse modelling and geostatistical analysis of the Avra Valley aquifer: Unpublished M.S. thesis, Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, 190 p. Clifton, P. M. and Neuman, S. P., 1982, Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in southern Arizona: Water Resour. Res., v. 18, n. 4, p. 1215–1234. David, M., 1977, Geostatistical ore reserve estimation: Elsevier, New York, 364 p. Delfiner, P., 1976, Linear estimation of non-stationary spatial phenomena,in, Guarascio, M., David, M., and Huijbregts, C. J., (Eds.), Advanced geostatistics in the mining industry: Proceedings of the NATO Advanced Study Institute: P. Reidel Publishing Company, Dordrecht, The Netherlands, p. 49–68. Delhomme, J. P., 1976, Application de la theorie des variables regionalisees dan les sciences de l'eau: Unpublished Docteur-Ingenieur thesis, Universite Pierre et Marie Curie, Paris, France, 130 p. Fennessy, P. J., 1982, Geostatistical analysis and stochastic modeling of the Tajo Basin aquifer, Spain: Unpublished M.S. thesis, Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, 124 p. Gambolati, G. and Volpi, G., 1979, A conceptual deterministic analysis of the kriging technique in hydrology: Water Resour. Res., v. 15, n. 3, p. 625–629. Haas, A. and Jousselin, C., 1976, Geostatistics in petroleum industry,in Guarascio, M., David, M., and Huijbregts, C. J., (Eds.), Advanced geostatistics in the mining industry, Proceedings of the NATO Advanced Study Institute: P. Reidel Publishing Company, Dordrecht, The Netherlands, p. 333–347. Huijbregts, C. and Matheron, G., 1971, Universal kriging (an optimal method for estimating and contouring in trend surface analyses): Can. Inst. Min. Metall., Spec. v. 12, p. 159–169. Journel, A. G. and Huijbregts, C. J., 1978, Mining geostatistic: Academic Press, New York, 600 p. Matheron, G., 1969, Le krigeage universel: Le cahiers du Centre de Morphologie Mathematique, Fasc. No. 1: Ecole des Mines de Paris, Fontainebleau, France. Matheron, G., 1971, La theorie des F.A.I.G.: Note Geostatistique u° 117: Centre de Morphologie Mathematique, Ecole des Mines de Paris, Fontainebleau, France. Matheron, G., 1973, The intrinsic random functions and their applications: Adv. Appl. Prob., v. 5, p. 439–468. Neuman, S. P. and Yakowitz, S., 1979, A statistical approach to the inverse problem of aquifer hydrology, 1, Theory: Water Resour. Res., v. 15, n. 4, p. 845–860. Pearson, C. E., 1974, Handbook of Applied Mathematics: Van Nostrand Reinhold Company, New York, 1265 p. Ripley, B. D., 1981, Spatial statistics: John Wiley & Sons, New York, 252 p. Sabourin, R., 1976, Application of two methods for the interpretation of the underlying variogram,in Guarascio, M., David, M., and Huijbregts, C. J., (Eds.), Advanced geostatistics in the mining industry, Proceedings of the NATO Advanced Study Institute: P. Reidel Publ. Co., Dordrecht, The Netherlands, p. 101–109. Schweppe, F. C., 1973, Uncertain dynamic systems: Prentice-Hall, Englewood Cliffs, New Jersey, 563 p. Seber, G. A. F., 1977, Linear regression analysis: John Wiley & Sons, New York, 465 p.