A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study

Springer Science and Business Media LLC - Tập 16 - Trang 1-14 - 2021
Sofia Bergström1,2, Linn Öijerstedt2,3,4, Julia Remnestål1,2, Jennie Olofsson1,2, Abbe Ullgren2,3, Harro Seelaar5, John C. van Swieten5, Matthis Synofzik6,7, Raquel Sanchez-Valle8, Fermin Moreno9,10, Elizabeth Finger11, Mario Masellis12, Carmela Tartaglia13, Rik Vandenberghe14,15,16, Robert Laforce17, Daniela Galimberti18,19, Barbara Borroni20, Chris R. Butler21,22, Alexander Gerhard23,24, Simon Ducharme25,26, Jonathan D. Rohrer27, Anna Månberg1,2, Caroline Graff2,3,4, Peter Nilsson1,2
1Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
2Swedish FTD Initiative, Stockholm, Sweden
3Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
4Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
5Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
6Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
7Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
8Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
9Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Spain
10Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain
11Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
12Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
13Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
14Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
15Neurology Service, University Hospitals Leuven, Leuven, Belgium
16Leuven Brain Institute, KU Leuven, Leuven, Belgium
17Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
18Fondazione IRCCS Ospedale Policlinico, Milan, Italy
19University of Milan, Centro Dino Ferrari, Milan, Italy.
20Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
21Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
22Department of Brain Sciences, Imperial College London, London, UK
23Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
24Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Duisburg, Germany
25Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
26McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
27Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK

Tóm tắt

A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.

Tài liệu tham khảo

Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266(8):2075–86. https://doi.org/10.1007/s00415-019-09363-4. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018. Swift IJ, Sogorb-Esteve A, Heller C, Synofzik M, Otto M, Graff C, et al. Fluid biomarkers in frontotemporal dementia: past, present and future. J Neurol Neurosurg Psychiatry. 2021;92(2):204–15. https://doi.org/10.1136/jnnp-2020-323520. Zetterberg H, van Swieten JC, Boxer AL, Rohrer JD. Review: fluid biomarkers for frontotemporal dementias. Neuropathol Appl Neurobiol. 2019;45(1):81–7. https://doi.org/10.1111/nan.12530. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–89. https://doi.org/10.1038/s41582-018-0058-z. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, and the NFL Group, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019;76(9):1035–48. https://doi.org/10.1001/jamaneurol.2019.1534. Skillback T, Mattsson N, Blennow K, et al. Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(5–6):397–403. https://doi.org/10.1080/21678421.2017.1281962. van der Ende EL, Xiao M, Xu D, Poos JM, Panman JL, Jiskoot LC, et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2020;91(6):612–21. https://doi.org/10.1136/jnnp-2019-322493. Remnestål J, Öijerstedt L, Ullgren A, Olofsson J, Bergström S, Kultima K, et al. Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers. Transl Neurodegener. 2020;9(1):27. https://doi.org/10.1186/s40035-020-00198-y. van der Ende EL, Meeter LH, Stingl C, van Rooij JGJ, Stoop MP, Nijholt DAT, et al. Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann Clin Transl Neurol. 2019;6(4):698–707. https://doi.org/10.1002/acn3.745. Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: current status and future perspectives. Biochim Biophys Acta. 2015;1854(7):757–68. https://doi.org/10.1016/j.bbapap.2014.12.010. Teunissen CE, Elias N, Koel-Simmelink MJ, et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement (Amst). 2016;2:86–94. Barschke P, Oeckl P, Steinacker P, al Shweiki MHDR, Weishaupt JH, Landwehrmeyer GB, et al. Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. J Neurol Neurosurg Psychiatry. 2020;91(5):503–11. https://doi.org/10.1136/jnnp-2019-322476. Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jiskoot L, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 2015;14(3):253–62. https://doi.org/10.1016/S1474-4422(14)70324-2. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. https://doi.org/10.1093/brain/awr179. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14. https://doi.org/10.1212/WNL.0b013e31821103e6. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–9. https://doi.org/10.1080/146608200300079536. Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol. 2020;19(2):145–56. https://doi.org/10.1016/S1474-4422(19)30394-1. Haggmark A, Bystrom S, Ayoglu B, et al. Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics. 2013;13(15):2256–67. https://doi.org/10.1002/pmic.201200580. Pin E, Sjoberg R, Andersson E, et al. Array-based profiling of proteins and autoantibody repertoires in CSF. Methods Mol Biol. 2019;2044:303–18. Haggmark A, Schwenk JM, Nilsson P. Neuroproteomic profiling of human body fluids. Proteomics Clin Appl. 2016;10(4):485–502. https://doi.org/10.1002/prca.201500065. Remnestål J, Just D, Mitsios N, Fredolini C, Mulder J, Schwenk JM, et al. CSF profiling of the human brain enriched proteome reveals associations of neuromodulin and neurogranin to Alzheimer’s disease. Proteomics Clin Appl. 2016;10(12):1242–53. https://doi.org/10.1002/prca.201500150. Andersson A, Remnestal J, Nellgard B, et al. Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer’s disease. Clin Chim Acta. 2019;494:79–93. Markaki I, Bergström S, Tsitsi P, Remnestål J, Månberg A, Hertz E, et al. Cerebrospinal fluid levels of kininogen-1 indicate early cognitive impairment in Parkinson’s disease. Mov Disord. 2020;35(11):2101–6. https://doi.org/10.1002/mds.28192. Remnestål J, Bergström S, Olofsson J, Sjöstedt E, Uhlén M, Blennow K, et al. Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds. Alzheimers Res Ther. 2021;13(1):54. https://doi.org/10.1186/s13195-021-00789-5. Bergström S, Remnestål J, Yousef J, Olofsson J, Markaki I, Carvalho S, et al. Multi-cohort profiling reveals elevated CSF levels of brain-enriched proteins in Alzheimer’s disease. Ann Clin Transl Neurol. 2021;8(7):1456–70. https://doi.org/10.1002/acn3.51402. Schwenk JM, Gry M, Rimini R, Uhlén M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J Proteome Res. 2008;7(8):3168–79. https://doi.org/10.1021/pr700890b. Schwenk JM, Igel U, Neiman M, Langen H, Becker C, Bjartell A, et al. Toward next generation plasma profiling via heat-induced epitope retrieval and array-based assays. Mol Cell Proteomics. 2010;9(11):2497–507. https://doi.org/10.1074/mcp.M110.001560. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2020. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the {tidyverse}. J Open Source Softw. 2019;4(43). https://doi.org/10.21105/joss.01686. Ripley WNVBD. Modern applied statistics with S. New York: Springer; 2002. (Fourth) Hong MG, Lee W, Nilsson P, Pawitan Y, Schwenk JM. Multidimensional normalization to minimize plate effects of suspension bead array data. J Proteome Res. 2016;15(10):3473–80. https://doi.org/10.1021/acs.jproteome.5b01131. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1996;58(1):267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. https://doi.org/10.18637/jss.v033.i01. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):77. https://doi.org/10.1186/1471-2105-12-77. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5. https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324. Wiener ALM. Classification and regression by random forest. R News. 2002;2:18–22. Le S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J Stat Softw. 2008;25(1):1–18. https://doi.org/10.18637/jss.v025.i01. Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses; 2020. Wilke C, Pujol-Calderón F, Barro C, Stransky E, Blennow K, Michalak Z, et al. Correlations between serum and CSF pNfH levels in ALS, FTD and controls: a comparison of three analytical approaches. Clin Chem Lab Med. 2019;57(10):1556–64. https://doi.org/10.1515/cclm-2019-0015. Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, Linden DJ, et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci. 2010;13(9):1090–7. https://doi.org/10.1038/nn.2621. Xiao MF, Xu D, Craig MT, Pelkey KA, Chien CC, Shi Y, et al. NPTX2 and cognitive dysfunction in Alzheimer’s disease. Elife. 2017;6. https://doi.org/10.7554/eLife.23798. Soldan A, Moghekar A, Walker KA, Pettigrew C, Hou X, Lu H, et al. Resting-state functional connectivity is associated with cerebrospinal fluid levels of the synaptic protein NPTX2 in non-demented older adults. Front Aging Neurosci. 2019;11:132. https://doi.org/10.3389/fnagi.2019.00132. Galasko D, Xiao M, Xu D, Smirnov D, Salmon DP, Dewit N, et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimers Dement (N Y). 2019;5(1):871–82. https://doi.org/10.1016/j.trci.2019.11.002. Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, et al. Quantitative proteomic profiling of cerebrospinal fluid to identify candidate biomarkers for Alzheimer’s disease. Proteomics Clin Appl. 2019;13(4):e1800105. https://doi.org/10.1002/prca.201800105. Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. Proteomics Clin Appl. 2018;12(1):1–13. https://doi.org/10.1002/prca.201700131. Duits FH, Brinkmalm G, Teunissen CE, Brinkmalm A, Scheltens P, van der Flier WM, et al. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):5. https://doi.org/10.1186/s13195-017-0335-x. van Steenoven I, Noli B, Cocco C, Ferri GL, Oeckl P, Otto M, Koel-Simmelink MJA, Bridel C, van der Flier WM, Lemstra AW, Teunissen CE. VGF Peptides in Cerebrospinal Fluid of Patients with Dementia with Lewy Bodies. Int J Mol Sci. 2019;20(19):4674, 1–14. https://doi.org/10.3390/ijms20194674. van Steenoven I, Koel-Simmelink MJA, Vergouw LJM, Tijms BM, Piersma SR, Pham TV, et al. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol Neurodegener. 2020;15(1):36. https://doi.org/10.1186/s13024-020-00388-2. Boiten WA, van Steenoven I, Xiao M, Worley PF, Lemstra AW, Teunissen CE. Pathologically Decreased CSFLevels of Synaptic Marker NPTX2 in DLB Are Correlated with Levels of Alpha-Synuclein and VGF. Cells. 2020;10(1):38, 1-13. https://doi.org/10.3390/cells10010038. Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells. 2019;8(2):90, 1-16. https://doi.org/10.3390/cells8020090. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62. https://doi.org/10.1152/physrev.00011.2013. Lashley T, Rohrer JD, Mead S, Revesz T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol. 2015;41(7):858–81. https://doi.org/10.1111/nan.12250. Scialò C, Tran TH, Salzano G, et al. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun. 2020;2(2):fcaa142.