Phonon transport in single-layer transition metal dichalcogenides: A first-principles study

Applied Physics Letters - Tập 105 Số 13 - 2014
Xiaokun Gu1, Ronggui Yang1
1University of Colorado at Boulder Department of Mechanical Engineering and Materials Science and Engineering Program, , Colorado 80309, USA

Tóm tắt

Two-dimensional transition metal dichalcogenides (TMDCs) are finding promising electronic and optical applications due to their unique properties. In this letter, we systematically study the phonon transport and thermal conductivity of eight semiconducting single-layer TMDCs, MX2 (M = Mo, W, Zr, and Hf, X = S and Se), by using the first-principles-driven phonon Boltzmann transport equation approach. The validity of the single-mode relaxation time approximation to predict the thermal conductivity of TMDCs is assessed by comparing the results with the iterative solution of the phonon Boltzmann transport equation. We find that the phononic thermal conductivities of 2H-type TMDCs are above 50 W/mK at room temperature while the thermal conductivity values of the 1T-type TMDCs are much lower, when the size of the sample is 1 μm. A very high thermal conductivity value of 142 W/mK was found in single-layer WS2. The large atomic weight difference between W and S leads to a very large phonon bandgap which in turn forbids the scattering between acoustic and optical phonon modes and thus resulting in very long phonon relaxation time.

Từ khóa


Tài liệu tham khảo

2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

2013, ACS Nano, 7, 2898, 10.1021/nn400280c

2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

2010, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

2010, Nano Lett., 10, 1271, 10.1021/nl903868w

2014, Appl. Phys. Lett., 104, 081902, 10.1063/1.4866415

2011, Physica B, 406, 2254, 10.1016/j.physb.2011.03.044

2012, Phys. Rev. B, 85, 033305, 10.1103/PhysRevB.85.033305

2012, Nano Lett., 13, 3447, 10.1021/nl3026357

2013, Phys. Rev. X, 3, 031002, 10.1103/PhysRevX.3.031002

2011, J. Chem. Phys., 134, 204705, 10.1063/1.3594205

2014, RSC Adv., 4, 7396, 10.1039/C3RA46090H

2013, Appl. Phys. Lett., 102, 081604, 10.1063/1.4793203

2013, J. Appl. Phys., 113, 104304, 10.1063/1.4794363

2013, Chem. Mater., 25, 3745, 10.1021/cm402281n

2014, Phys. Chem. Chem. Phys., 16, 10866, 10.1039/c4cp00487f

2013, J. Phys. Chem. C, 117, 9042, 10.1021/jp402509w

2014, ACS Nano, 8, 986, 10.1021/nn405826k

2014, Appl. Phys. Lett., 104, 201902, 10.1063/1.4876965

2014, Phys. Rev. B, 89, 035438, 10.1103/PhysRevB.89.035438

2013, Appl. Phys. Lett., 103, 253103, 10.1063/1.4850995

2013, Appl. Phys. Lett., 103, 133113, 10.1063/1.4823509

2013, J. Appl. Phys., 114, 064307, 10.1063/1.4818414

2013, Sci. Rep., 3, 2209, 10.1038/srep02209

2014, Phys. Chem. Chem. Phys.,, 16, 1008, 10.1039/C3CP53746C

2010, Phys. Rev. B, 81, 085205, 10.1103/PhysRevB.81.085205

See supplementary material at http://dx.doi.org/10.1063/1.4896685 for extracting interatomic force constants from first-principles calculations, the basics of Boltzmann transport equation, the comparison between relaxation time approximation and the iterative approach, the contributions of the different phonon branches of 2H TMDCs and the phonon lifetime for the eight TMDCs.

2011, Phys. Rev. B, 84, 085204, 10.1103/PhysRevB.84.085204

2007, Appl. Phys. Lett., 91, 231922, 10.1063/1.2822891

2011, Phys. Rev. Lett., 106, 045901, 10.1103/PhysRevLett.106.045901

2013, Phys. Rev. B, 87, 165201, 10.1103/PhysRevB.87.165201

2012, Phys. Rev. B, 86, 174307, 10.1103/PhysRevB.86.174307

2014, Phys. Rev. B, 89, 155426, 10.1103/PhysRevB.89.155426

X. Gu and R. Yang, “First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene,” preprint arXiv:1404.2874 (2014).

2002, Phys. Rev. B, 65, 125407, 10.1103/PhysRevB.65.125407

2001, Phys. Rev. B, 64, 235305, 10.1103/PhysRevB.64.235305

1987, J. Solid State Chem., 70, 207, 10.1016/0022-4596(87)90057-0

1965, J. Phys. Chem. Solids, 26, 1445, 10.1016/0022-3697(65)90043-0

2014, Nat. Commun., 5, 3525, 10.1038/ncomms4525

1990, The Physics of Phonons

2013, Phys. Rev. Lett., 111, 025901, 10.1103/PhysRevLett.111.025901