On the volume of graded linear series and Monge–Ampère mass

Mathematische Zeitschrift - Tập 275 - Trang 233-243 - 2012
Tomoyuki Hisamoto1
1Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

Tóm tắt

We give an analytic description of the volume of a graded linear series, as the Monge–Ampère mass of a certain equilibrium metric associated to any smooth Hermitian metric on the line bundle. We also show the continuity of this equilibrium metric on some Zariski open subset, under a geometric assumption.

Tài liệu tham khảo

Bedford, E., Taylor, A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37(1), 1–44 (1976) Berman, R.: Bergman kernels and equilibrium measures for ample line bundles. arXiv:0704.1640. Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 1485–1524 (2009) Berman, R., Boucksom, S.: Growth of balls of holomorphic sections and energy at equilibrium. Invent. Math. 181(2), 337–394 (2010) Berman, R., Demailly, J.P.: Regularity of plurisubharmonic upper envelopes in big cohomology classes. Perspectives in analysis, geometry, and topology, vol 296, pp. 39–66, Progr. Math., Birkhäuser/Springer, New York (2012) Boucksom, S.: On the volume of a line bundle. Int. J. Math. 13(10), 1043–1063 (2002) Boucksom, S., Eyssidieux, S., Guedj, V., Zeriahi, A.: Monge-Ampère equations in big cohomology classes. Acta Math. 205(2), 199–262 (2010) Di Biagio, L., Pacienza, G.: Restricted volumes of effective divisors. arXiv:1207.1204. Ein, L., Lazarsfeld, R., Mustaţă, M., Nakamaye, M., Popa, M.: Restricted volumes and base loci of graded linear series. Am. J. Math. 131(3), 607–651 (2009) Fujita, T.: Approximating Zariski decomposition of big line bundles. Kodai Math. J. 17(1), 1–3 (1994) Hisamoto, T.: Restricted Bergman kernel asymptotics. Trans. Am. Math. Soc. 364(7), 3585–3607 (2012) Ito, A.: Okounkov bodies and Seshadri constants. arXiv:1202.6662. Kaveh, K., Khovanskii, A.G.: Newton convex bodies, semigroups of integral points, graded algebras and intersection theory. arXiv:0904.3350. To appear in Ann. of Math Kołodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Amer. Math. Soc. 178, no. 840. American Mathematical Society (2005) Lazarsfeld, R.: Positivity in algebraic geometry. \(I\), and \(II\). A Series of Modern Surveys in Mathematics, 48, and 49. Springer, Berlin (2004) Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supèr. 42 (4), no. 5, 783–835 (2009) Siciak, J.: On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Am. Math. Soc. 105, 322–357 (1962) Jow, S.-Y.: Okounkov bodies and restricted volumes along very general curves. Adv. Math. 223(4), 1356–1371 (2010)