Electric control of magnetism at the Fe/BaTiO3 interface

Nature Communications - Tập 5 Số 1
G. Radaelli1, D. Petti1, Evgeny Plekhanov2, Ignasi Fina3, Piero Torelli4, B. Rache Salles4,5, M. Cantoni1, Christian Rinaldi1, Diego Gutiérrez6, G. Panaccione4, M. Varela7,8, Silvia Picozzi9, J. Fontcuberta6, R. Bertacco1
1Politecnico di Milano, Como, Italy
2National Research Council (CNR), L'Aquila (Italy)
3Inst. of Barcelona (ICMAB-CSIC), Catalonia (Spain)
4Consiglio Nazionale delle Ricerche (CNR - IOM), Trieste (Italy)
5Univ. Federale do Rio de Janeiro, Rio de Janeiro (Brazil)
6Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Catalonia (Spain)
7Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
8Univ. Complutense de Madrid, Madrid (Spain)
9Consiglio Nazionale delle Ricerche (CNR - SPIN), L'Aquila (Italy)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

Wang, W.-G., Li, M., Hageman, S. & Chien., C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

Cheong, S.-W. & Mostovoy., M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20–27 (2009).

Khomskii, D. I. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006).

Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys 38, R123–R152 (2005).

Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett 97, 047201 (2006).

Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

Thiele, C., Dörr, K., Bilani, O., Rödel, J. & Schultz, L. Influence of strainon the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr, Ca). Phys. Rev. B 75, 054408 (2007).

Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. L. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348–351 (2007).

Brivio, S., Petti, D., Bertacco, R. & Cezar, J. C. Electric field control of magnetic anisotropies and magnetic coercivity in Fe/BaTiO3(001) heterostructures. Appl. Phys. Lett. 98, 092505 (2011).

Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

Skumryev, V. et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

He, X et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

Yin, Y. W. et al. Enhanced tunneling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat. Mater. 12, 397–402 (2013).

Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nat. Mater. 10, 753–758 (2011).

Bocher, L. et al. Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. Nano Lett. 12, 376–382 (2012).

Serin, V. et al. TEM and EELS measurements of interface roughness in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys. Rev. B 79, 144413 (2009).

Brivio, S. et al. Effects of Au nanoparticles on the magnetic and transport properties of La0.67Sr0.33MnO3 ultrathin layers. Phys. Rev. B 81, 094410 (2010).

Bertacco, R. et al. Proximity effects induced by a gold layer on La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 91, 102506 (2007).

Fina, I., Fàbrega, L., Martí, X., Sánchez, F. & Fontcuberta, J. Chiral domains in cycloidal multiferroic thin films: switching and memory effects. Phys. Rev. Lett. 107, 257601–257605 (2011).

Fina, I. et al. Nonferroelectric contributions to the hysteresis cycles in manganite thin films: A comparative study of measurement techniques. J. Appl. Phys 109, 074105 (2011).

Regan, T. J. et al. Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy. Phys. Rev. B 64, 214422 (2001).

Crocombette, J. P., Pollak, M., Jollet, F., Thromat, N. & Gautier-Soyer, M. X-ray-absorption spectroscopy at the Fe L2,3 threshold in iron oxides. Phys. Rev. B 52, 3143–3150 (1995).

Bonell, F. et al. Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface. Appl. Phys. Lett. 102, 152401 (2013).

Fan, Y. et al. Exchange bias of the interface spin system at the Fe/MgO interface. Nat. Nanotech. 8, 438–444 (2009).

Fechner, M., Ostanin, S. & Mertig, I. Effect of oxidation of the ultrathin Fe electrode material on the strength of magnetoelectric coupling in composite multiferroics. Phys. Rev. B 80, 094405 (2009).

Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

Jiang, H., Gomez-Abal, R. I., Rinke, P. & Scheffler, M. First-principles modeling of localized d states with the GW@LDA+U approach. Phys. Rev. B 82, 045108 (2010).

Anisimov, V., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

Bertacco, R., Cantoni, M., Riva, M., Tagliaferri, A. & Ciccacci, F. Epitaxial growth and characterization of layered magnetic nanostructures. Appl. Surf. Sci. 252, 1754–1764 (2005).

Radaelli, G., Brivio, S., Fina, I. & Bertacco, R. Correlation between growth dynamics and dielectric properties of epitaxial BaTiO3 films. Appl. Phys. Lett. 100, 102904 (2012).

Brivio, S., Rinaldi, C., Petti, D., Bertacco, R. & Sanchez, F. Epitaxial growth of Fe/BaTiO3 heterostructures. Thin Solid Films 519, 5804–5807 (2011).

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Monkhorst, J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).