A sharper stability bound of Fourier frames
Tóm tắt
Given a real sequence {λn}n∈ℤ. Suppose that
$$\left\{ {e^{i\lambda _n x} } \right\}_{n \in \mathbb{Z}}$$
is a frame for L2[−π, π] with bounds A, B. The problem is to find a positive constant L such that for any real sequence {μn}n∈ℤ with ¦μn −λn¦ ≤δ
Tài liệu tham khảo
Balan, R. (1997). Stability theorems for Fourier frames and wavelet Riesz bases,J. Four. Anal. Appl.,3, 499–504.
Christensen, O. (1997). Perturbation of frames and applications to Gabor frames, inGabor Analysis and Algorithms: Theory and Applications, Feichtinger, H.G. and Strohmer, T., Eds., Birkhäuser, Ch. 5, 193–209.
Duffin, R.J. and Schaeffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Amer. Math. Soc.,72, 341–366.
Kadec, M.I. (1964). The exact value of the Paley-Wiener constant,Sov. Math. doklady,5, 559–561.