L p and mean value properties of subharmonic functions on Riemannian manifolds

Peter Li1, Richard Schoen2
1Purdue University, West Lafayette, USA
2University of California, Berkeley, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, M., The Dirichlet problem at infinity for manifolds of negative curvature. To appear inJ. Differential Geom. Anderson, M. & Schoen, R., Preprint. Cheeger, J., Gromov, M. &Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds.J. Differential Geom., 17 (1983), 15–53. Cheng, S. Y. &Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications.Comm. Pure Appl. Math., 28 (1975), 333–354. Chung, L. O., Existence of harmonicL 1 functions in complete Riemannian manifolds. Unpublished. Garnett, L., Foliations, the ergodic theorem and brownian motion. Preprint. Greene, R. E. &Wu, H., Integrals of subharmonic functions on manifolds of nonnegative curvature.Invent. Math., 27 (1974), 265–298. —,Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, 699. Springer-Verlag, Berlin-Heidelberg-New York (1979). Karp, L. & Li, P., The heat equation on complete Riemannian manifolds. Preprint. Li, P. &Yau, S. T., Estimates of eigenvalues of a compact Riemannian manifold.Proc. Symp. Pure Math., 36 (1980), 205–239. Strichartz, R., Analysis of the Laplacian on a complete Riemannian manifold.J. Funct. Anal., 52 (1983), 48–79. Sullivan, D., Preprint. Wu, H., On the volume of a noncompact manifold.Duke Math. J., 49 (1982), 71–78. Yau, S. T., Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math., 28 (1975), 201–228. —, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry.Indiana Univ. Math. J., 25 (1976), 659–670.