Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine
Tóm tắt
One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008 to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal, cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital role in multidisciplinary clinical teams.
Tài liệu tham khảo
Lakhani P, Prater AB, Hutson RK et al (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15:350–359
Russell S, Bohannon J (2015) Artificial intelligence. Fears of an AI pioneer. Science 349:252
Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131
Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229
Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
King BF Jr (2017) Guest editorial: discovery and artificial intelligence. AJR Am J Roentgenol 209:1189–1190
Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515
Casey B, Yee KM, Ridley EL, Forrest W, Kim A (2017) Top 5 trends from RSNA 2017 in Chicago. Available via https://www.auntminnie.com/index.aspx?sec=rca&sub=rsna_2017&pag=dis&ItemID=119393. Accessed 24 Apr 2018.
Ward P, Ridley E, Forrest W, Moan R (2018) Top 5 trends from ECR 2018 in Vienna. Available via https://www.auntminnie.com/index.aspx?sec=rca&sub=ecr_2018&pag=dis&ItemID=120195. Accessed 24 Apr 2018.
Patuzzi J (2017) Big data, AI look set to come under scrutiny at ECR 2018. Available via https://www.auntminnieeurope.com/index.aspx?sec=rca&sub=ecr_2018&pag=dis&ItemID=614795. Accessed 24 Apr 2018.
Jha S, Topol EJ (2016) Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316:2353–2354
Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15
Dodd JD (2007) Evidence-based practice in radiology: steps 3 and 4--appraise and apply diagnostic radiology literature. Radiology 242:342–354
Azavedo E, Zackrisson S, Mejàre I, Heibert Arnlind M (2012) Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Med Imaging 12:22
Dheeba J, Albert Singh N, Tamil Selvi S (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52
Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 208:754–760
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577
Sardanelli F, Di Leo G (2009) Reproducibility: Intraobserver and Interobserver variability. In: Springer (ed) Biostatistics for radiologists - planning, performing, and writing a radiologic study, pp 125–140
Sardanelli F, Ali M, Hunink MG, Houssami N, Sconfienza LM, Di Leo G (2018) To share or not to share? Expected pros and cons of data sharing in radiological research. Eur Radiol 28:2328–2335
Krittanawong C (2018) The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 48:e13–e14
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762
Yip SSF, Parmar C, Kim J, Huynh E, Mak RH, Aerts H (2017) Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol 97:8–15
Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43
Sutton EJ, Huang EP, Drukker K et al (2017) Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes. Eur Radiol Exp 1:22
Becker AS, Schneider MA, Wurnig MC, Wagner M, Clavien PA, Boss A (2018) Radiomics of liver MRI predict metastases in mice. Eur Radiol Exp 2:11
Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589
Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006
Rahmim A, Salimpour Y, Jain S et al (2016) Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin 12:e1–e9
Pesapane F, Patella F, Fumarola EM et al (2017) Intravoxel incoherent motion (IVIM) diffusion weighted imaging (DWI) in the Periferic prostate cancer detection and stratification. Med Oncol 34:35
Fusco R, Di Marzo M, Sansone C, Sansone M, Petrillo A (2017) Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system. Eur Radiol Exp 1:10
Patella F, Franceschelli G, Petrillo M et al (2018) A multiparametric analysis combining DCE-MRI- and IVIM -derived parameters to improve differentiation of parotid tumors: a pilot study. Future Oncol. https://doi.org/10.2217/fon-2017-0655
King AD, Chow KK, Yu KH et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 266:531–538
Peng SL, Chen CF, Liu HL et al (2013) Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed 26:443–450
Dey D, Commandeur F (2017) Radiomics to identify high-risk atherosclerotic plaque from computed tomography: the power of quantification. Circ Cardiovasc Imaging. 10:e007254
Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on Radiomic techniques. J Thorac Imaging 33:26–34
Sachs PB, Gassert G, Cain M, Rubinstein D, Davey M, Decoteau D (2013) Imaging study protocol selection in the electronic medical record. J Am Coll Radiol 10:220–222
Chen H, Zhang Y, Zhang W et al (2017) Low-dose CT via convolutional neural network. Biomed Opt Express 8:679–694
Golkov V, Dosovitskiy A, Sperl JI et al (2016) Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 35:1344–1351
Verghese A, Shah NH, Harrington RA (2018) What this computer needs is a physician: humanism and artificial intelligence. JAMA 319:19–20
Chockley K, Emanuel E (2016) The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol 13:1415–1420
Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219
Marquis of Halifax. Available via http://www.met.reading.ac.uk/Research/cag-old/forecasting/quotes.html. Accessed 24 Apr 2018.
Abraham Lincoln. Available via https://www.goodreads.com/quotes/328848-the-best-way-to-predict-your-future-is-to-create
Sardanelli F (2017) Trends in radiology and experimental research. Eur Radiol Exp 1:1
Recht M, Bryan RN (2017) Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol 14:1476–1480
Becker AS, Blüthgen C, Phi van VD et al (2018) Detection of tuberculosis patterns in digital photographs of chest x-ray images using deep learning: feasibility study. Int J Tuberc Lung Dis 22:328–335
Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol 91:20170576
Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol 52:434–440
Cheng JZ, Ni D, Chou YH et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6:24454
Lu X, Yang Y, Wu F et al (2016) Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 95:e3973
Li R, Zhang W, Suk HI et al (2014) Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv 17:305–312
Korfiatis P, Kline TL, Coufalova L et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835–2844
Matsuo K, Purushotham S, Moeini A et al (2017) A pilot study in using deep learning to predict limited life expectancy in women with recurrent cervical cancer. Am J Obstet Gynecol 217:703–705
Obrzut B, Kusy M, Semczuk A, Obrzut M, Kluska J (2017) Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer 17:840
van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13:361–369
Nance JW Jr, Meenan C, Nagy PG (2013) The future of the radiology information system. AJR Am J Roentgenol 200:1064–1070
Chaudhary K, Poirion OB, Lu L, Garmire LX (2018) Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 24:1248–1259
Abajian A, Murali N, Savic LJ et al (2018) Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol 29:850–857
El-Sayed ME, Rakha EA, Reed J, Lee AH, Evans AJ, Ellis IO (2008) Predictive value of needle core biopsy diagnoses of lesions of uncertain malignant potential (B3) in abnormalities detected by mammographic screening. Histopathology 53:650–657
Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52
Nakajima K, Okuda K, Watanabe S et al (2018) Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med 32:303–310
Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251
Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261
Makris GC, Uberoi R (2016) Interventional radiology-the future: evolution or extinction? Cardiovasc Intervent Radiol 39:1789–1790
Kwan SW, Talenfeld AD, Brunner MC (2016) The top three health care developments impacting the practice of interventional radiology in the next decade. AJR Am J Roentgenol 19:1–6
Kwan SW, Fidelman N, Ma E, Kerlan RK Jr, Yao FY (2012) Imaging predictors of the response to transarterial chemoembolization in patients with hepatocellular carcinoma: a radiological-pathological correlation. Liver Transpl 18:727–736
Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133
Jha S (2016) Will computers replace radiologists? Available via https://www.medscape.com/viewarticle/863127#. Accessed 24 Apr 2018.
Francavilla ML, Arleo EK, Bluth EI, Straus CM, Reddy S, Recht MP (2016) Surveying academic radiology department chairs regarding new and effective strategies for medical student recruitment. AJR Am J Roentgenol 207:1171–1175
Liew C (2018) The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 102:152–156
Pesapane F, Volonté C, Codari M, Sardanelli F (2018) Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging https://doi.org/10.1007/s13244-018-0645-y
Lisboa PJ, Taktak AF (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19:408–415
Ravi D, Wong C, Deligianni F et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inform 21:4–21