Binding and Field Desorption of Individual Tungsten Atoms

Journal of Chemical Physics - Tập 48 Số 4 - Trang 1465-1480 - 1968
Gert Ehrlich1, C. F. Kirk1
1General Electric Research and Development Center Schenectady, New York

Tóm tắt

The binding energy of individual tungsten atoms on different planes of a tungsten crystal, heretofore inaccessible to measurement, has been explored by field desorption at 20°K. Tunneling, rather than evaporation over a Schottky saddle, is the limiting step under these conditions. The appropriate relations between desorption field and atomic binding are derived and tested by establishing the evaporation field for tungsten at 6.1 V / Å. Desorption measurements on single adatoms lead to the following binding energies: (110), 5.3 eV; (211), 7.0; (310), 6.7; (111), 6.0; (321), 6.7; (411), 6.2. On low index planes such as (110), (211), and (310), agreement with the energetics estimated from Morse and Lennard-Jones potentials is reasonable. For rougher surfaces, however, the experimental quantities are significantly smaller than expected, suggesting a fundamental limitation on such potentials. Comparison of binding energies with activation energies for diffusion over the (211) and (321) planes also leads to the view that fluctuations in the position of lattice atoms play an important role in surface migration.

Từ khóa


Tài liệu tham khảo

1963, Appl. Phys. Letters, 3, 93, 10.1063/1.1753886

1962, J. Chem. Phys., 37, 1606, 10.1063/1.1733348

1964, J. Appl. Phys., 35, 2271, 10.1063/1.1702840

1957, Z. Elektrochem., 61, 43

1960, Advan. Electron. Electron Phys., 13, 83, 10.1016/S0065-2539(08)60210-3

1966, Discussions Faraday Soc., 41, 7, 10.1039/df9664100007

1963, J. Chem. Phys., 38, 1613, 10.1063/1.1776932

1966, J. Franklin Inst., 282, 382, 10.1016/0016-0032(66)90043-3

1966, J. Chem. Phys., 44, 1039, 10.1063/1.1726787

1964, Surface Sci., 2, 484, 10.1016/0039-6028(64)90090-1

1964, Surface Sci., 3, 1

1963, Brit. J. Appl. Phys., 14, 474, 10.1088/0508-3443/14/8/305

1966, Phil. Mag., 14, 817

1961, J. Appl. Phys., 32, 2425, 10.1063/1.1777085

1966, Philips Res. Rept. Suppl., 1

1966, J. Electronmicroscopy (Tokyo), 15, 279

1964, J. Appl. Phys., 35, 2806, 10.1063/1.1713112

1913, Phys. Rev., 2, 450, 10.1103/PhysRev.2.450

1927, Phys. Rev., 30, 201, 10.1103/PhysRev.30.201

1925, Physica, 5, 249

1936, Phys. Rev., 50, 735, 10.1103/PhysRev.50.735

1965, J. Res. Natl. Bur. Std., A69, 417

1958, Atomic Energy Levels, Natl. Bur. Std. Circ., 3

1955, Naturwiss., 42, 35, 10.1007/BF00621525

1962, Advan. Phys., 11, 281, 10.1080/00018736200101302

1964, J. Appl. Phys., 35, 3053

1964, Rev. Mod. Phys., 36, 134, 10.1103/RevModPhys.36.134

1964, J. Appl. Phys., 35, 265, 10.1063/1.1713297

1953, Z. Physik, 134, 208, 10.1007/BF01329412

1962, J. Appl. Phys., 33, 91, 10.1063/1.1728534

1958, Acta Met., 6, 620, 10.1016/0001-6160(58)90155-X

1966, Phys. Rev. Letters, 17, 351, 10.1103/PhysRevLett.17.351

1966, Appl. Phys. Letters, 9, 265, 10.1063/1.1754743

1966, Soviet Phys.—JETP, 23, 945

1966, Zh. Eksp. Teor. Fiz., 50, 1425

1965, Phys. Rev., A139, 1181

1965, Phys. Rev., A139, 1893

1964, Solid State Commun., 2, 73, 10.1016/0038-1098(64)90043-2

1966, Phys. Rev., 145, 546, 10.1103/PhysRev.145.546

1959, Phys. Rev., 114, 687, 10.1103/PhysRev.114.687

1967, Surface Sci., 6, 246, 10.1016/0039-6028(67)90007-6

1966, Phys. Rev., 145, 423, 10.1103/PhysRev.145.423

1951, Phys. Rev., 82, 87, 10.1103/PhysRev.82.87

1941, Phys. Rev., 60, 661, 10.1103/PhysRev.60.661

1966, J. Chem. Phys., 45, 1605, 10.1063/1.1727804

1967, Rev. Mod. Phys., 39, 373, 10.1103/RevModPhys.39.373

1967, Surface Sci., 8, 165, 10.1016/0039-6028(67)90079-9

1958, Phys. Rev., 112, 804, 10.1103/PhysRev.112.804

1960, Phys. Rev., 117, 632, 10.1103/PhysRev.117.632

1960, J. Chem. Phys., 32, 447, 10.1063/1.1730714

1955, Phys. Rev., 98, 1692, 10.1103/PhysRev.98.1692

1958, J. Phys. Chem. Solids, 4, 27, 10.1016/0022-3697(58)90192-6

1966, Phys. Rev., 151, 476, 10.1103/PhysRev.151.476