Brucella suis urease encoded by ure 1 but not ure 2 is necessary for intestinal infection of BALB/c mice

BMC Microbiology - Tập 7 - Trang 1-14 - 2007
Aloka B Bandara1, Andrea Contreras1, Araceli Contreras-Rodriguez1, Ana M Martins1, Victor Dobrean1, Sherry Poff-Reichow1, Parthiban Rajasekaran1, Nammalwar Sriranganathan1, Gerhardt G Schurig1, Stephen M Boyle1
1Department of Biomedical Sciences & Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA

Tóm tắt

In prokaryotes, the ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. The Brucella genomes contain two urease operons designated as ure 1 and ure 2. We investigated the role of the two Brucella suis urease operons on the infection, intracellular persistence, growth, and resistance to low-pH killing. The deduced amino acid sequence of urease-α subunits of operons-1 and -2 exhibited substantial identity with the structural ureases of alpha- and beta-proteobacteria, Gram-positive and Gram-negative bacteria, fungi, and higher plants. Four ure deficient strains were generated by deleting one or more of the genes encoding urease subunits of B. suis strain 1330 by allelic exchange: strain 1330Δure 1K (generated by deleting ureD and ureA in ure 1 operon), strain 1330Δure 2K (ureB and ureC in ure 2 operon), strain 1330Δure 2C (ureA, ureB, and ureC in ure 2 operon), and strain 1330Δure 1KΔure 2C (ureD and ureA in ure 1 operon and ureA, ureB, and ureC in ure 2 operon). When grown in urease test broth, strains 1330, 1330Δure 2K and 1330Δure 2C displayed maximal urease enzyme activity within 24 hours, whereas, strains 1330Δure 1K and 1330Δure 1KΔure 2C exhibited zero urease activity even 96 h after inoculation. Strains 1330Δure 1K and 1330Δure 1KΔure 2C exhibited slower growth rates in tryptic soy broth relative to the wild type strain 1330. When the BALB/c mice were infected intraperitoneally with the strains, six weeks after inoculation, the splenic recovery of the ure deficient strains did not differ from the wild type. In contrast, when the mice were inoculated by gavage, one week after inoculation, strain 1330Δure 1KΔure 2C was cleared from livers and spleens while the wild type strain 1330 was still present. All B. suis strains were killed when they were incubated in-vitro at pH 2.0. When the strains were incubated at pH 2.0 supplemented with 10 mM urea, strain 1330Δure 1K was completely killed, strain 1330Δure 2C was partially killed, but strains 1330 and 1330Δure 2K were not killed. These findings suggest that the ure 1 operon is necessary for optimal growth in culture, urease activity, resistance against low-pH killing, and in vivo persistence of B. suis when inoculated by gavage. The ure 2 operon apparently enhances the resistance to low-pH killing in-vitro.

Tài liệu tham khảo

Collins CM, D'Orazio SEF: Bacterial ureases: structure, regulation of expression and role in pathogenesis [Review]. Mol Microbiol. 1993, 9: 907-913. 10.1111/j.1365-2958.1993.tb01220.x. Burne RA, Chen YM: Bacterial ureases in infectious diseases. Microbes and Infection. 2000, 2 (5): 533-542. 10.1016/S1286-4579(00)00312-9. McLean RJC, Nickel JC, Cheng KJ, Costerton JW: The ecology and pathogenicity of urease-producing bacteria in the urinary tract [Review]. Crit Rev Microbiol. 1988, 16: 37-79. Mobley HLT, Hausinger RP: Microbial ureases: significance, regulation, and molecular characterization [Review]. Microbiol Rev. 1989, 53: 85-108. Mobley HLT, Island MD, Hausinger RP: Molecular biology of microbial ureases [Review]. Microbiol Rev. 1995, 59: 451-480. Morou-Bermudez E, Burne RA: Genetic and physiologic characterization of urease of Actinomyces naeslundii. Infect Immun. 1999, 67: 504-512. Corbel MJ, Brinley Morgan WJ: Genus Brucella Meyer and Shaw 173AL. Bergey's Manual of Systematic Bacteriology. Edited by: Krieg NR, Holt JG. 1920, Williams and Wilkins, Baltimore, Md, 1: 377-390. Ko J, Splitter GA: Molecular Host-Pathogen Interaction in Brucellosis: Current Understanding and Future Approaches to Vaccine Development for Mice and Humans. Clin Microbiol Rev. 2003, 16 (1): 65-78. 10.1128/CMR.16.1.65-78.2003. Paulson IT, Sheshadri R, Nelson KE: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA. 2002, 99: 13148-13153. 10.1073/pnas.192319099. Chen G, Fournier RL, Varanasi S, Mahama-Relue PA: Helicobacter pylori survival in gastric mucosa by generation of a pH gradient. Biophys J. 1997, 73: 1081-1088. Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G: The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology. 1998, 114: 58-70. 10.1016/S0016-5085(98)70633-X. Riddles PW, Whan V, Blakeley RL, Zerner B: Cloning and sequencing of a jack bean urease encoding cDNA. Gene. 1991, 108: 265-267. 10.1016/0378-1119(91)90443-F. Jabri E, Carr MB, Hausinger RP, Karplus PA: The crystal structure of urease from Klebsiella aerogenes. Science. 1995, 268: 998-1004. 10.1126/science.7754395. Lee MH, Pankratz HS, Wang S, Scott RA, Finnegan MG, Johnson MK, Ippolito JA, Christianson DW, Hausinger RP: Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Prot Sci. 1993, 2: 1042-1052. Park IS, Carr MB, Hausinger RP: In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc Natl Acad Sci USA. 1994, 91: 3233-3237. 10.1073/pnas.91.8.3233. Smith DG, Russell WC, Ingledew WJ, Thirkell D: Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis. J Bacteriol. 1993, 175: 3253-3258. Jahns T: Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. J Bacteriol. 1996, 178: 403-409. Monack DM, Falkow S: Cloning of Bordetella bronchiseptica urease genes and analysis of colonization by a urease-negative mutant strain in a guinea-pig model. Mol Microbiol. 1993, 10: 545-553. 10.1111/j.1365-2958.1993.tb00926.x. Corbel MJ: Brucellosis: an overview. Emerg Infect Dis. 1997, 3: 213-221. Porte F, Liautard JP, Kohler S: Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun. 1999, 67 (8): 4041-4047. Bonnet M, Rafi MM, Chikindas ML, Montville TJ: Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl Environ Microbiol. 2006, 72 (4): 2556-2563. 10.1128/AEM.72.4.2556-2563.2006. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. Schurig GG, Roop RM, Bagchi T, Boyle SM, Buhrman D, Sriranganathan N: Biological properties of RB51: a stable rough strain of Brucella abortus. Vet Microbiol. 1991, 28: 171-188. 10.1016/0378-1135(91)90091-S. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 2 McQuiston JR, Schurig GG, Sriranganathan N, Boyle SM: Transformation of Brucella species with suicide and broad host-range plasmids. Methods Mol Biol. 1995, 47: 143-148. Ried JL, Colmer A: An npt-sac B-sac R cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene. 1987, 57: 239-246. 10.1016/0378-1119(87)90127-2. Kovach ME, Phillips RW, Elzer PH, Roop RM, Peterson KM: pBBR1MCS: a broad-host range cloning vector. BioTechniques. 1994, 16: 800-802. Plommet M: Minimal requirements for growth of Brucella suis and other Brucella species. Zbl Bakt. 1991, 275: 436-450. Lentner M, Bishop T: Experimental Design and Analysis. 1993, Valley Book Company, Blacksburg, VA, Second Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, Layssac M, Mandrand-Berthelot M, Köhler S, Liautard J: Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. J Bacteriol. 2001, 183 (2): 426-434. 10.1128/JB.183.2.426-434.2001. Mangan JA, Sole KM, Mitchison DA, Butcher PD: An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acids Res. 1997, 25: 675-676. 10.1093/nar/25.3.675. Manganelli RE, Dubnau S, Tyagi FR, Smith I: Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999, 31: 715-724. 10.1046/j.1365-2958.1999.01212.x. Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD: Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA. 2003, 100: 14321-14326. 10.1073/pnas.2436197100. Cordeiro C, Ponces Freire A: Protein determination in permeabilized yeast cells using the Coomassie brilliant blue dye binding assay. Anal Biochem. 1994, 223 (2): 321-323. 10.1006/abio.1994.1591. Dunn BE, Campbell GP, Perez-Perez GI, Blaser MJ: Purification and characterization of urease from Helicobacter pylori. J Biol Chem. 1990, 265 (16): 9464-9469. Klingenberg M: Methods in Enzymatic Analysis. Edited by: Bergmeyer HU. 1974, Academic Press, New York Sangari FJ, Seoane A, Rodriguez MC, Aguero J, Garcia Lobo JM: Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun. 2007, 75 (2): 774-80. 10.1128/IAI.01244-06. Hooper SD, Berg OG: On the nature of gene innovation: duplication patterns in microbial genomes. Mol Biol Evol. 2003, 20 (6): 945-54. 10.1093/molbev/msg101.