Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials

Advanced Energy Materials - Tập 8 Số 1 - 2018
Junjie Yu1, Chenguang Fu1, Yintu Liu1, Kaiyang Xia1, Umut Aydemir2, Thomas C. Chasapis2, G. Jeffrey Snyder2, Xinbing Zhao1, Tiejun Zhu1
1State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2Department of Materials Science and Engineering Northwestern University Evanston, IL 60208 (USA)

Tóm tắt

AbstractNbFeSb‐based half‐Heusler alloys have been recently identified as promising high‐temperature thermoelectric materials with a figure of merit zT > 1, but their thermal conductivity is still relatively high. Alloying Ta at the Nb site would be highly desirable because the large mass fluctuation between them could effectively scatter phonons and reduce the lattice thermal conductivity. However, practically it is a great challenge due to the high melting point of refractory Ta. Here, the successful synthesis of Ta‐alloyed (Nb1−xTax)0.8Ti0.2FeSb (x = 0 – 0.4) solid solutions with significantly reduced thermal conductivity by levitation melting is reported. Because of the similar atomic sizes and chemistry of Nb and Ta, the solid solutions exhibit almost unaltered electrical properties. As a result, an overall zT enhancement from 300 to 1200 K is realized in the single‐phase Ta‐alloyed solid solutions, and the compounds with x = 0.36 and 0.4 reach a maximum zT of 1.6 at 1200 K. This work also highlights that the isoelectronic substitution by atoms with similar size and chemical nature but large mass difference should reduce the lattice thermal conductivity but maintain good electrical properties in thermoelectric materials, which can be a guide for optimizing the figure of merit by alloying.

Từ khóa


Tài liệu tham khảo

10.1126/science.283.5403.804

10.1038/nmat2090

10.1038/nature11439

10.1039/c3ee42187b

10.1021/ja7110652

10.1021/ja109138p

10.1021/ja111199y

10.1002/adfm.201201576

10.1038/npjcompumats.2015.15

10.1038/nature09996

10.1126/science.1159725

10.1038/nmat3273

10.1002/adfm.201604145

10.1002/adfm.201600718

10.1002/advs.201600004

10.1002/adma.201605884

10.1016/j.mattod.2013.09.015

10.1002/aenm.201500588

10.1038/natrevmats.2016.32

10.1016/j.actamat.2009.02.026

10.1002/adfm.201300663

10.1002/aenm.201100126

10.1021/ja206491j

10.1143/JJAP.46.L673

10.1063/1.2809377

10.1063/1.2959103

10.1039/c2ee21554c

10.1039/C5TC01196E

10.1063/1.371863

10.1103/PhysRevB.70.184207

10.1002/adfm.200701369

10.1016/j.intermet.2012.07.037

10.1063/1.4772605

10.1088/0022-3727/43/41/415403

10.1209/0295-5075/104/46003

10.1063/1.4823859

10.1002/aenm.201400600

10.1039/C4EE03042G

10.1038/ncomms9144

10.1002/advs.201600035

10.1002/adma.201501030

10.1126/science.aad3749

10.1038/nnano.2016.182

10.1103/PhysRevB.59.8615

10.1039/C5TA04418A

10.1002/aelm.201600394

10.1039/C6CP07897D

10.1557/jmr.2011.82

10.1002/aenm.201300336

10.1103/PhysRev.131.1906

10.1103/PhysRevB.80.125205

10.1103/PhysRevB.46.6131

10.1016/j.nanoen.2017.03.012

10.1103/PhysRev.120.1149

10.1103/PhysRev.119.507

10.1063/1.96248

10.1063/1.348499

10.1103/PhysRevB.24.7404

10.1073/pnas.1617663113

10.1103/PhysRevB.80.184302