Weighted estimates for multilinear pseudodifferential operators
Tóm tắt
In this paper, we study the weighted estimates for multilinear pseudodifferential operators. We show that a multilinear pseudodifferential operator is bounded with respect to multiple weights whenever its symbol satisfies some smoothness and decay conditions. Our result generalizes similar ones from the classical A
p
weights to multiple weights.
Tài liệu tham khảo
Bényi, Á., Maldonado, D., Naibo, V., et al.: On the Hörmander classes of bilinear pseudodifferential operators. Integr. Equ. Oper. Theory, 67, 341–364 (2010)
Bényi, Á., Torres, R. H.: Almost orthogonality and a class of bounded bilinear pseudodifferential operators. Math. Res. Lett., 11, 1–11 (2004)
Bernicot, F.: A bilinear pseudodifferential calculus. J. Geom. Anal., 20, 39–62 (2010)
Bernicot, F., Torres, R. H.: Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus. Anal. PDE, 4, 551–571 (2011)
Bui, T. A., Duong, X. T.: Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers. Bull. Sci. Math., 137, 63–75 (2013)
Coifman, R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212, 315–331 (1975)
Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulieres et opérateurs multi-linéaires. Ann. Inst. Fourier, Grenoble, 28, 177–202 (1978)
Coifman, R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque, 57, 1–185 (1978)
Coifman, R., Meyer, Y.: Wavelets. Calderón-Zygmund andMultilinear Operators, Translated from the 1990 and 1991 French originals by David Salinger. Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge, 1997
Dai, W., Lu, G.: L p estimates for multi-linear and multi-parameter pseudo-differential operators, preprint, available at http://arxiv.org/abs/1308.4062
Ding, Y., Lu, S., Yang, D.: A criterion on weighted L p boundedness for rough multilinear oscillatory singular integrals. Proc. Amer. Math. Soc., 129, 1127–1136 (2001)
Duong, X. T., Gong, R., Grafakos, L., et al.: Maximal operator for multilinear singular integrals with non-smooth kernels. Indiana Univ. Math. J., 58, 2517–2541 (2009)
Duong, X. T., Grafakos, L., Yan, L.: Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans. Amer. Math. Soc., 362, 2089–2113 (2010)
Grafakos, L.: Classical Fourier Analysis, Second Edition, Springer-Verlag, New York, 2008
Grafakos, L., Liu, L., Yang, D.: Multiple weighted norm inequalities for maximal multilinear singular integrals with non-smooth kernels. Proc. Royal Soc. of Edinburgh, 141A, 755–775 (2011)
Grafakos, L., Torres, R. H.: Multilinear Calderón-Zygmund theory. Adv. Math., 165, 124–164 (2002)
Hu, G., Meng, Y., Yang, D.: Multilinear commutators of singular integrals with non doubling measures. Integral Equations Operator Theory, 51, 235–255 (2005)
Hu, G., Yang, D.: Sharp function estimates and weighted norm inequalities for multilinear singular integral operators. Bull. London Math. Soc., 35, 759–769 (2003)
Lacey, M., Thiele, C.: L p estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann. of Math., 146, 693–724 (1997)
Lacey, M., Thiele, C.: On Calderóns conjecture. Ann. of Math., 149, 475–496 (1999)
Lerner, A. K., Ombrosi, S., Pérez, C., et al.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. in Math., 220, 1222–1264 (2009)
Li, K., Sun, W.: Weighted estimates for multilinear Fourier multipliers. Forum Math., in press, http://dx.doi.org/10.1515/forum-2012-0128
Li, W., Xue, Q., Yabuta, K.: Weighted version of Carleson measure and multilinear Fourier multiplier. Forum Math., to appear
Michalowski, N., Rule, D. J., Staubach, W.: Multilinear pseudodifferential operators beyond Calderón-Zygmund theory. J. Math. Anal. Appl., 414, 149–165 (2014)
Muscalu, C., Pipher, J., Tao, T., et al.: Bi-parameter paraproducts. Acta Math., 193, 269–296 (2004)
Muscalu, C., Pipher, J., Tao, T., et al.: Multi-parameter paraproducts. Rev. Mat. Iberoam., 22, 963–976 (2006)
Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993
Yang, D., Yuan, W., Zhuo, C.: Fourier multipliers on Triebel-Lizorkin-type spaces. J. Funct. Spaces Appl., 2012, Article ID 431016, 37 pages (2012)