Isolation of Novel Microalgae from Acid Mine Drainage and Its Potential Application for Biodiesel Production

Applied Biochemistry and Biotechnology - Tập 173 - Trang 2054-2064 - 2014
Hyun-Shik Yun1,2, Hongkyun Lee2,3, Young-Tae Park2, Min-Kyu Ji2, Akhil N. Kabra1, Chung Jeon4, Byong-Hun Jeon1, Jaeyoung Choi2
1Department of Environmental Engineering, Yonsei University, Wonju, South Korea
2Korea Institute of Science and Technology, Gangneung Institute, Gangneung, South Korea
3Department of Chemical Engineering, Hanyang University, Seoul, South Korea
4Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, South Korea

Tóm tắt

Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L−1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05 ± 0.35 g L−1), lipid productivity (0.82 ± 0.14 g L−1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.

Tài liệu tham khảo

Rösch, C., Skarka, J., & Wegerer, N. (2012). Bioresource Technology, 107, 191–199. Harwati, T. U., Willke, T., & Vorlop, K. D. (2012). Bioresource Technology, 121, 54–60. Su, C.-H., Chien, L.-J., Gomes, J., Lin, Y.-S., Yu, Y.-K., Liou, J.-S., & Syu, R.-J. (2011). Journal of Applied Phycology, 23, 903–908. Amini Khoeyi, Z., Seyfabadi, J., & Ramezanpour, Z. (2012). Aquaculture International, 20, 41–49. Liu, Z.-Y., Wang, G.-C., & Zhou, B.-C. (2008). Bioresource Technology, 99, 4717–4722. Salama, E. S., Kim, H. C., Abou-Shanab, R. A. I., Ji, M. K., Oh, Y. K., Kim, S. H., & Jeon, B. H. (2013). Bioprocess and Biosystems Engineering, 36, 827–833. Ji, M. K., Gee, E. D., Yun, H. S., Lee, W. R., Park, Y. T., Khan, M. A., Jeon, B. H., & Choi, J. (2012). Journal of Hazardous Materials, 229, 298–306. Takagi, M., & Karseno, T. Y. (2006). Journal of Bioscience and Bioengineering, 101, 223–226. Jiang, L., Luo, S., Fan, X., Yang, Z., & Guo, R. (2011). Applied Energy, 88, 3336–3341. Cho, S., Luong, T. T., Lee, D., Oh, Y. K., & Lee, T. (2011). Bioresource Technology, 102, 8639–8645. Park, Y.-T., Lee, H., Yun, H.-S., Song, K.-G., Yeom, S.-H., & Choi, J. (2013). Bioresource Technology, 150, 242–248. Lizzul, A. M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N., & Campos, L. (2014). Bioresource Technology, 151, 12–18. Johnson, D. B. (2012). Frontiers in Microbiology, 3, 1–8. Wylezich, C., Nies, G., Mylnikov, A. P., Tautz, D., & Arndt, H. (2010). Protist, 161, 342–352. Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y.-K., & Lee, T. (2013). Bioresource Technology, 131, 515–520. Abou-Shanab, R. A. I., Hwang, J. H., Cho, Y., Min, B., & Jeon, B. H. (2011). Applied Energy, 88, 3300–3306. Pan, Y.-Y., Wang, S.-T., Chuang, L.-T., Chang, Y.-W., & Chen, C.-N. N. (2011). Bioresource Technology, 102, 10510–10517. Abou-Shanab, R. A. I., Matter, I. A., Kim, S. N., Oh, Y. K., Choi, J., & Jeon, B. H. (2011). Biomass and Bioenergy, 35, 3079–3085. Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Bioresource Technology, 125, 75–81. Forehead, H. I., & O’Kelly, C. J. (2013). Bioresource Technology, 129, 329–334. Peleg, M., Corradini, M. G., & Normand, M. D. (2007). Food Research International, 40, 808–818. Bligh, B., & Dyer, W. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917. Lepage, G., & Roy, C. C. (1984). Journal of Lipid Research, 25, 1391–1396. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Bioresource Technology, 101, 3097–3105. Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). Applied Microbiology and Biotechnology, 90, 1429–1441. Prasanna, R., Ratha, S. K., Rojas, C., & Bruns, M. A. (2011). Folia Microbiologica, 56, 491–496. Nancucheo, I., & Johnson, D. B. (2012). Microbial Biotechnology, 5, 34–44. Baos, R., Garcia-Villada, L., Agrelo, M., Lopez-Rodas, V., Hiraldo, F., & Costas, E. (2002). European Journal of Phycology, 37, 593–600. Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). Engineering in Life Sciences, 9, 254–260. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96. Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biotechnology Progress, 24, 815–820. Ji, M. K., Abou-Shanab, R. A. I., Kim, S. H., Salama, E., Lee, S. H., Kabra, A. N., et al. (2013). Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 58, 142–148. Petkov, G., & Garcia, G. (2007). Biochemical Systematics and Ecology, 35, 281–285. Stournas, S., Lois, E., & Serdari, A. (1995). Journal of American Oil Chemistry Society, 72, 433–437. Knothe, G. (2008). Energy & Fuels, 22, 1358–1364. Miao, X. L., & Wu, Q. Y. (2006). Bioresource Technology, 97, 841–846. Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith, R. L., & Inomata, H. (2009). Bioresource Technology, 100, 5237–5242.