Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany
Tóm tắt
This study of the urban heat island (UHI) aims to support planning authorities by going beyond the traditional way of urban heat island studies. Therefore, air temperature as well as the physiologically equivalent temperature (PET) were applied to take into account the effect of the thermal atmosphere on city dwellers. The analysis of the urban heat island phenomenon of Stuttgart, Germany, includes a long-term frequency analysis using data of four urban and one rural meteorological stations. A (high resolution map) of the UHI intensity and PET was created using stepwise multiple linear regression based on data of car traverses as well as spatial data. The mapped conditions were classified according to the long-term frequency analysis. Regarding climate change, the need for adaptation measures as urban greening is obvious. Therefore, a spatial analysis of quantification of two scenarios of a chosen study area was done by the application of a micro-scale model. The nocturnal UHI of Stuttgart is during 15 % stronger than 4 K in the city center during summer when daytime heat stress occurs during 40 %. A typical summer condition is mapped using statistical approach to point out the most strained areas in Stuttgart center and west. According to the model results, the increase in number of trees in a chosen area (Olga hospital) can decrease PET by 0.5 K at 22:00 CET but by maximum 27 K at 14:00 CET.
Tài liệu tham khảo
Alcoforado MJ, Andrade H (2006) Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theor Appl Climatol 84(1–3):151–159. doi:10.1007/s00704-005-0152-1
Ali-Toudert F (2005) Dependence of outdoor thermal comfort on street design in hot and dry climate. PhD thesis. Albert-Ludwigs-University, Freiburg im Breisgau. http://www.freidok.uni-freiburg.de/volltexte/2078/
Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging faċades and vegetation on thermal comfort in urban street canyons. Sol. Energy 81(6):742–754. doi:10.1016/j.solener.2006.10.007
Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy and Buildings 42(9):1361–1368. doi:10.1016/j.enbuild.2010.03.026
Blankenstein S, Kuttler W (2004) Impact of street geometry on downward longwave radiation and air temperature in an urban environment. Meteorol Z 13(5):373–379. doi:10.1127/0941-2948/2004/0013-0373
Böhm R, Gabl K (1978) Die Wärmeinsel einer Großstadt in Abhängigkeit von verschiedenen meteorologischen Parametern. Archiv für Meteorologie. Geophysik und Bioklimatologie Serie B 26(2–3):219–237. doi:10.1007/BF02242675
Bottyán Z, Unger J (2003) A multiple linear statistical model for estimating the mean maximum urban heat island. Theor Appl Climatol 75(3–4):233–243. doi:10.1007/s00704-003-0735-7
Bottyán Z, Kircsi A, Szegedi S , Unger J (2005) The relationship between built-up areas and the spatial development of the mean maximum urban heat island in Debrecen, Hungary. Int J Climatol 25(3):405–418. doi:10.1002/joc.1138
Bründel W, Mayer H, Baumgartner A (1987) Stadtklima Bayern. Abschlußbericht zum Teilprogramm Klimamessungen München, Reihe Materialien, vol 43. Staatsministerium für Landesentwicklung, Bayern and Germany
Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13(3–4):373–384. doi:10.1016/S1364-8152(98)00042-5
Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51(2):285–295. doi:10.1016/j.buildenv.2011.11.020
D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62(9):976–990. doi:10.1111/j.1398-9995.2007.01393.x
Eliasson I (2000) The use of climate knowledge in urban planning. Landsc Urban Plan 48(1–2):31–44. doi:10.1016/S0169-2046(00)00034-7
Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43 (2):71–75. doi:10.1007/s004840050118
Howard L (1833) The climate of London: deduced from meteorological observations, vol 1
Huttner S (2012) Further development and application of the 3D microclimate simulation ENVI-met. PhD thesis. Johannes Gutenberg- Universität, Mainz. http://ubm.opus.hbz-nrw.de/volltexte/2012/3112
Jendritzky G, Dear R, Havenith G (2012) UTCI—why another thermal index Int J Biometeorol 56(3):421–428. doi:10.1007/s00484-011-0513-7
Katsoulis BD, Theoharatos GA (1985) Indications of the urban heat island in Athens, Greece. Journal of Climate and Applied Meteorology 24(12):1296–1302. doi:10.1175/1520-0450(1985)024<1296:IOTUHI>2.0.CO;2
Ketterer C, Matzarakis A (2014a) Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape and Urban Planning 122:78–88. doi:10.1016/j.landurbplan.2013.11.003
Ketterer C, Matzarakis A (2014b) Human-biometeorological assessment of the urban heat island in a city with complex topography— the case of Stuttgart, Germany. Urban Climate. doi:10.1016/j.uclim.2014.01.003
Landsberg HE (1981) The urban climate. The Academic Press, London
Matthies F (2008) Heat-health action plans: guidance. World Health Organization. Europe, Copenhagen and Denmark
Matzarakis A, Mayer H (1997) Heat stress in Greece. Int Journal Biometeorol 41(1):34–39. doi:10.1007/s004840050051
Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84
Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J Biometeorol 51(4):323–334. doi:10.1007/s00484-006-0061-8
Matzarakis A, Thomson F, Mayer H (2009) Klimawandel und Heizgradtage in Freiburg im Breisgau, Südwestdeutschland. Gefahrstoffe - Reinhaltung der Luft 69:319–324
Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139. doi:10.1007/s00484-009-0261-0
Mayer H, Höppe PR (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49. doi:10.1007/BF00866252
Mihalakakou G, Santamouris M, Papanikolaou N, Cartalis C, Tsangrassoulis A (2004) Simulation of the urban heat island phenomenon in Mediterranean climates. Pure Appl Geophys 161(2):429–451. doi:10.1007/s00024-003-2447-4
Mirzaei PA, Haghighat F (2010) Approaches to study urban heat island—abilities and limitations. Build Environ 45(10):2192–2201. doi:10.1016/j.buildenv.2010.04.001
Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A, Mihalakakou G (2001) Analysis of the green roof thermal properties and investigation of its energy performance. Energy and Buildings 33(7):719–729. doi:10.1016/S0378-7788(01)00062-7
Oke TR (1973) City size and the urban heat island. Atmos Environ 1967 8(7):769–779. doi:10.1016/0004-6981(73)90140-6
Oke TR (1976) The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14(4)
Ren Z, He X, Zheng H, Zhang D, Yu X, Shen G, Guo R (2013) Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests 4(4):868–886. doi:10.3390/f4040868
Runnalls KE, Oke TR (2000) Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys Geogr 21(4):283–304. doi:10.1080/02723646.2000.10642711
Schädler G, Lohmeyer A (1996) Kaltluft- und Windfeldberechnungen für Stuttgart. In: State capital Stuttgart Environmental Protection Office (ed) Untersuchungen zur Umwelt Stuttgart 21
Shashua-Bar L, Hoffman ME (2004) Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study: urban streets and courtyards with trees. Build Environ 39(9):1087–1099. doi:10.1016/j.buildenv.2003.11.007
Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900. doi:10.1175/BAMS-D-11-00019.1
Streiling S, Matzarakis A (2003) Influence of single and small clusters of trees on the bioclimate of a city: a case study. J Arboric 29(6):309–316
Szymanowski M, Kryza M (2012) Local regression models for spatial interpolation of urban heat island—an example from Wrocław, SW Poland. Theor Appl Climatol 108(1–2):53–71. doi:10.1007/s00704-011-0517-6
Unger J (1996) Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary. Theor Appl Climatol 54(3–4):147–151. doi:10.1007/BF00865157
Unger J (2004) Intra-urban relationship between surface geometry and urban heat island: review and new approach. Clim Res 27:253–264. doi:10.3354/cr027253
Unger J (2006) Modelling of the annual mean maximum urban heat island using 2D and 3D surface parameters. Clim Res 30:215–226. doi:10.1504/IJEP.2009.021817
Unger J, Sümeghy Z, Zoboki J (2001) Temperature cross-section features in an urban area. Atmos Res 58(58/2):117–127. doi:10.1016/S0169-8095(01)00087-4
Voogt J, Oke T (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. doi:10.1016/S0034-4257(03)00079-8
Zakṡek K, Oṡtir K (2012) Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens Environ 117:114–124. doi:10.1016/j.rse.2011.05.027
Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG (2003) Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol 111(2):290–295. doi:10.1067/mai.2003.53