Hypoxia-inducible factor-1α and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients

Breast Cancer Research - Tập 11 - Trang 1-12 - 2009
Galatea Kallergi1, Harris Markomanolaki1, Vicky Giannoukaraki1, Maria A Papadaki1, Areti Strati2, Evi S Lianidou2, Vassilis Georgoulias1,3, Dimitris Mavroudis1,3, Sofia Agelaki1,3
1Laboratory of Tumor Cell Biology, School of Medicine, University of Crete, Voutes, Heraklion, Greece
2Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
3Department of Medical Oncology, University General Hospital of Heraklion, Voutes, Heraklion, Greece

Tóm tắt

The detection of peripheral blood circulating tumor cells (CTCs) and bone marrow disseminated tumor cells (DTCs) in breast cancer patients is associated with a high incidence of disease relapse and disease-related death. Since hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) play an important role in angiogenesis and tumor progression, the purpose of the current study was to investigate their expression in CTCs. The expression of cytokeratins (CK), VEGF, vascular endothelial growth factor receptor-2 (VEGF2), HIF-1α and phosphorylated-focal adhesion kinase (pFAK) in CTCs from 34 patients with metastatic breast cancer who had detectable CK-19 mRNA-positive CTCs was assessed using double staining experiments and confocal laser scanning microscopy. Peripheral blood mononuclear cells (PBMCs) were stained with a monoclonal A45-B/B3 pancytokeratin antibody in combination with either VEGF or VEGFR2 or HIF-1α or pFAK antibodies, respectively. pFAK expression in circulating tumor cells was detected in 92% of patients whereas expression of VEGF, VEGF2 and HIF-1α was observed in 62%, 47% and 76% of patients, respectively. VEGF, VEGF2, HIF-1α and pFAK were expressed in 73%, 71%, 56% and 81%, respectively, of all the detected CTCs. Vascular endothelial growth mRNA was also detected by quantitative real-time RT-PCR in immunomagnetically-separated CTCs. Double and triple staining experiments in cytospins of immunomagnetically-isolated CTCs showed that VEGF co-expressed with HIF-1α and VEGF2. The expression of pFAK, HIF-1α, VEGF and VEGF2 in CTCs of patients with metastatic breast cancer could explain the metastatic potential of these cells and may provide a therapeutic target for their elimination.

Tài liệu tham khảo

Braun S, Harbeck N: Molecular markers of metastasis in breast cancer: current understanding and prospects for novel diagnosis and prevention. Expert Rev Mol Med. 2001, 3: 1-14. 10.1017/S1462399401003520. Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S: Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer Res. 2003, 9: 6326-6334. Pantel K, Cote RJ, Fodstad O: Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst. 1999, 91: 1113-1124. 10.1093/jnci/91.13.1113. Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis C, Apostolaki S, Malamos N, Kakolyris S, Kotsakis A, Xenidis N, Reppa D, Georgoulias V: Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol. 2002, 20: 3404-3412. 10.1200/JCO.2002.08.135. Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K, Androulakis N, Kouroussis C, Pallis T, Christophylakis C, Argyraki K, Lianidou ES, Stathopoulos S, Georgoulias V, Mavroudis D: Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol. 2006, 24: 3756-3762. 10.1200/JCO.2005.04.5948. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, Pierga JY: Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol. 2008, 19: 496-500. 10.1093/annonc/mdm507. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989, 246: 1306-1309. 10.1126/science.2479986. Pradeep CR, Sunila ES, Kuttan G: Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr Cancer Ther. 2005, 4: 315-321. 10.1177/1534735405282557. Liang Y, Brekken RA, Hyder SM: Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr Relat Cancer. 2006, 13: 905-919. 10.1677/erc.1.01221. Bachelder RE, Wendt MA, Mercurio AM: Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002, 62: 7203-7206. Zhang X, Xu WH, Ge YL, Hou L, Li Q: Effect of siRNA transfection targeting VEGF gene on proliferation and apoptosis of human breast cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2007, 23: 14-17. Mohammed RA, Green A, El-Shikh S, Paish EC, Ellis IO, Martin SG: Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer. 2007, 96: 1092-1100. 10.1038/sj.bjc.6603678. Mitra SK, Schlaepfer DD: Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006, 18: 516-523. 10.1016/j.ceb.2006.08.011. Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A, Lim ST, Bernard-Trifilo JA, Ilic D, Stupack DG, Cheresh DA, Schlaepfer DD: Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. 2006, 25: 5969-5984. 10.1038/sj.onc.1209588. Laramee M, Chabot C, Cloutier M, Stenne R, Holgado-Madruga M, Wong AJ, Royal I: The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem. 2007, 282: 7758-7769. 10.1074/jbc.M611327200. Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002, 2: 38-47. 10.1038/nrc704. Liu L, Ning X, Sun L, Shi Y, Han S, Guo C, Chen Y, Sun S, Yin F, Wu K, Fan D: Involvement of MGr1-Ag/37LRP in the vincristine-induced HIF-1 expression in gastric cancer cells. Mol Cell Biochem. 2007, 303: 151-160. 10.1007/s11010-007-9467-9. Kallergi G, Mavroudis D, Georgoulias V, Stournaras C: Phosphorylation of FAK, PI-3K, and impaired actin organization in CK-positive micrometastatic breast cancer cells. Mol Med. 2007, 13: 79-88. 10.2119/2006-00083.Kallergi. Kallergi G, Agelaki S, Kalykaki A, Stournaras C, Mavroudis D, Georgoulias V: Phosphorylated EGFR and PI-3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res. 2008, 10: R80-10.1186/bcr2149. Takata K, Morishige K, Takahashi T, Hashimoto K, Tsutsumi S, Yin L, Ohta T, Kawagoe J, Takahashi K, Kurachi H: Fasudil-induced hypoxia-inducible factor-1{alpha} degradation disrupts a hypoxia-driven vascular endothelial growth factor autocrine mechanism in endothelial cells. Mol Cancer Ther. 2008, 7: 1551-1561. 10.1158/1535-7163.MCT-07-0428. Stathopoulou A, Gizi A, Perraki M, Apostolaki S, Malamos N, Mavroudis D, Georgoulias V, Lianidou ES: Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin Cancer Res. 2003, 9: 5145-5151. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004, 10: 8152-8162. 10.1158/1078-0432.CCR-04-1110. Naume B, Borgen E, Nesland JM, Beiske K, Gilen E, Renolen A, Ravnas G, Qvist H, Karesen R, Kvalheim G: Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation. Int J Cancer. 1998, 78: 556-560. 10.1002/(SICI)1097-0215(19981123)78:5<556::AID-IJC5>3.0.CO;2-G. Zygalaki E, Stathopoulou A, Kroupis C, Kaklamanis L, Kyriakides Z, Kremastinos D, Lianidou ES: Real-time reverse transcription-PCR quantification of vascular endothelial growth factor splice variants. Clin Chem. 2005, 51: 1518-1520. 10.1373/clinchem.2004.046987. Tai SK, Tan OJ, Chow VT, Jin R, Jones JL, Tan PH, Jayasurya A, Bay BH: Differential expression of metallothionein 1 and 2 isoforms in breast cancer lines with different invasive potential: identification of a novel nonsilent metallothionein-1H mutant variant. Am J Pathol. 2003, 163: 2009-2019. Kagara N, Tanaka N, Noguchi S, Hirano T: Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci. 2007, 98: 692-697. 10.1111/j.1349-7006.2007.00446.x. Kattan Z, Minig V, Leroy P, Dauca M, Becuwe P: Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells. Breast Cancer Res Treat. 2008, 108: 203-215. 10.1007/s10549-007-9597-5. Zagzag D, Nomura M, Friedlander DR, Blanco CY, Gagner JP, Nomura N, Newcomb EW: Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J Cell Physiol. 2003, 196: 394-402. 10.1002/jcp.10306. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262. Lobodasch K, Frohlich F, Rengsberger M, Schubert R, Dengler R, Pachmann U, Pachmann K: Quantification of circulating tumour cells for the monitoring of adjuvant therapy in breast cancer: an increase in cell number at completion of therapy is a predictor of early relapse. Breast. 2007, 16: 211-218. 10.1016/j.breast.2006.12.005. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G: Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet. 2002, 360: 683-689. 10.1016/S0140-6736(02)09838-0. Paterlini-Brechot P, Benali NL: Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Lett. 2007, 253: 180-204. 10.1016/j.canlet.2006.12.014. Levy AP, Levy NS, Wegner S, Goldberg MA: Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995, 270: 13333-13340. 10.1074/jbc.270.22.13333. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW: Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999, 59: 5830-5835. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL: The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000, 157: 411-421. Neufeld G, Tessler S, Gitay-Goren H, Cohen T, Levi BZ: Vascular endothelial growth factor and its receptors. Prog Growth Factor Res. 1994, 5: 89-97. 10.1016/0955-2235(94)90019-1. Weigand M, Hantel P, Kreienberg R, Waltenberger J: Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis. 2005, 8: 197-204. 10.1007/s10456-005-9010-0. Aesoy R, Sanchez BC, Norum JH, Lewensohn R, Viktorsson K, Linderholm B: An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells. Mol Cancer Res. 2008, 6: 1630-1638. 10.1158/1541-7786.MCR-07-2172.