A detailed study of the reactions between size selected aluminum cluster ions, Al+n (n=3–26), and oxygen

Journal of Chemical Physics - Tập 87 Số 10 - Trang 5728-5738 - 1987
Martin F. Jarrold1, J. E. Bower1
1AT&T Bell Laboratories, Murray Hill, New Jersey, 07974

Tóm tắt

A detailed study of the reactions between size selected aluminum cluster ions and oxygen is presented. The experiments were performed using a low energy ion beam apparatus. Measurements of product distributions and total reaction cross sections at collision energies of 1.2 and 4.2 eV for aluminum cluster ions with between 3 and 26 atoms are reported. The total reaction cross sections increase with cluster size in a way which roughly correlates with the increase in the cluster’s physical size. The main products are Al+n−4, Al+n−5, Al+n−6, and Al+. Only a very small fraction of the product ions contain oxygen. We suggest that the reaction occurs by chemisorption of O2 onto the cluster followed by rapid loss of two Al2O molecules to give Al+n−4. If the Al+n−4 fragment contains sufficient energy it will undergo further dissociation by loss of one or more aluminum atoms to give Al+n−5, Al+n−6, and Al+. RRKM theory is used to estimate the amount of energy above the dissociation threshold required to cause dissociation of the bare clusters on the experimental time scale. For the larger clusters this excess energy is remarkably large. Using this data we are able to deduce some information about energy disposal in the reaction. It is likely that the Al2O molecules carry away a substantial fraction of the exothermicity arising from chemisorption of oxygen onto the clusters.

Từ khóa


Tài liệu tham khảo

1985, Surf. Sci., 156

1984, J. Chem. Phys., 80, 1360, 10.1063/1.446817

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1985, J. Am. Chem. Soc., 107, 518, 10.1021/ja00288a049

1984, J. Am. Chem. Soc., 106, 5351, 10.1021/ja00330a052

1986, J. Am. Chem. Soc., 108, 27, 10.1021/ja00261a006

1986, J. Phys. Chem., 90, 2315, 10.1021/j100402a013

1986, Chem. Phys. Lett., 131, 1, 10.1016/0009-2614(86)80507-3

1987, J. Chem. Phys., 86, 4245, 10.1063/1.451885

1987, J. Chem. Phys., 86, 5568, 10.1063/1.452529

1986, J. Chem. Phys., 85, 632, 10.1063/1.451589

1987, J. Chem. Phys., 86, 715, 10.1063/1.452274

1985, Surf. Sci., 156, 134, 10.1016/0039-6028(85)90566-7

1985, Chem. Phys. Lett., 122, 410, 10.1016/0009-2614(85)80247-5

1986, Chem. Phys. Lett., 129, 429, 10.1016/0009-2614(86)80223-8

1987, J. Am. Chem. Soc., 109, 936, 10.1021/ja00237a070

1986, J. Phys. Chem., 90, 4480, 10.1021/j100410a004

1986, J. Chem. Phys., 85, 5373, 10.1063/1.451157

1987, J. Chem. Phys., 87, 1610, 10.1063/1.453221

1987, J. Chem. Phys., 86, 3876, 10.1063/1.451948

1986, J. Chem. Phys., 85, 4747, 10.1063/1.451753

1984, Ber. Bunsenges. Phys. Chem., 88, 242, 10.1002/bbpc.19840880314

1986, Phys. Rev. Lett., 56, 2168, 10.1103/PhysRevLett.56.2168

1986, J. Chem. Phys., 84, 2226, 10.1063/1.450384

1982, Surf. Sci., 115, 15, 10.1016/0039-6028(82)90658-6

1986, J. Chem. Phys., 84, 6507, 10.1063/1.450747

1984, J. Electron Spectrosc. Relat. Phenom., 33, 175, 10.1016/0368-2048(84)80020-1

1981, J. Chem. Phys., 74, 6511, 10.1063/1.440991

1981, J. Chem. Phys., 74, 6978, 10.1063/1.441064

1985, J. Chem. Phys., 82, 3659, 10.1063/1.448901

1958, J. Chem. Phys., 29, 294, 10.1063/1.1744477

1977, J. Phys. Chem. Ref. Data, 6

1959, J. Chem. Phys., 32, 1366

1977, J. Phys. Chem., 81, 994, 10.1021/j100525a014

1987, Chem. Phys. Lett., 137, 5, 10.1016/0009-2614(87)80293-2

1986, Surf. Sci., 165, 37, 10.1016/0039-6028(86)90663-1

1975, Surf. Sci., 47, 98, 10.1016/0039-6028(75)90276-9

1980, Surf. Sci., 95, 587, 10.1016/0039-6028(80)90197-1

1981, Surf. Sci., 104, 300, 10.1016/0039-6028(81)90137-0

1982, Chem. Phys. Lett., 88, 13, 10.1016/0009-2614(82)80060-2

1981, Surf. Sci., 108, 421, 10.1016/0039-6028(81)90460-X

1981, Surf. Sci., 109, L560

1982, Phys. Rev. B, 25, 5547, 10.1103/PhysRevB.25.5547