Induction of NMDA and GABA<sub>A</sub>Receptor-Mediated Ca<sup>2+</sup>Oscillations With KCC2 mRNA Downregulation in Injured Facial Motoneurons

Journal of Neurophysiology - Tập 89 Số 3 - Trang 1353-1362 - 2003
Hiroki Toyoda1,2, Koji Ohno3, Junko Yamada4, Masahiko Ikeda1, Akihito Okabe1, Kohji Sato3, Kenji Hashimoto2, Atsuo Fukuda4,1
1Departments of Physiology
2Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192; and
3Anatomy and
4Department of Biological Information Processing, Graduate School of Electronic Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan

Tóm tắt

To clarify the changes that occur in γ-aminobutyric acid type A (GABAA) receptor-mediated effects and contribute to alterations in the network activities after neuronal injury, we studied intracellular Ca2+concentration ([Ca2+]i) dynamics in a rat facial-nerve-transection model. In facial motoneurons, an elevation of the resting [Ca2+]i, GABA-mediated [Ca2+]itransients, enhancement of the glutamate-evoked [Ca2+]iincreases, and spontaneous [Ca2+]ioscillations were induced by axotomy. All these axotomy-induced modifications were abolished by the GABAA-receptor antagonist bicuculline and N-methyl-d-aspartate (NMDA)-receptor antagonistd(−)-2-amino-5-phosphonopentanoic acid. A downregulation of K+-Clcotransporter (KCC2) mRNA, an increase in intracellular Clconcentration ([Cl]i), and transformation of GABAergic hyperpolarization to depolarization were also induced by axotomy. We suggest that in axotomized neurons KCC2 downregulation impairs Clhomeostasis and makes GABA act depolarizing, resulting in endogenous GABA inducing [Ca2+]ioscillations via facilitation of NMDA-receptor activation. Such GABAA-receptor-mediated [Ca2+]ioscillations may play a role in neural survival and regeneration.

Từ khóa


Tài liệu tham khảo

10.1126/science.8097060

10.1016/0304-3940(93)90505-F

10.1523/JNEUROSCI.16-05-01808.1996

10.1038/nrn920

10.1113/jphysiol.1989.sp017762

10.1016/0304-3940(88)90275-3

10.1016/S0166-2236(97)01147-8

Berninger B, 1995, Development, 121, 2327, 10.1242/dev.121.8.2327

10.1021/bi00246a001

10.1007/BF00325030

10.1113/jphysiol.1996.sp021505

10.1016/0736-5748(90)90080-L

10.1523/JNEUROSCI.20-21-08069.2000

10.1113/jphysiol.1995.sp020649

10.1016/S0896-6273(00)80433-X

10.1016/0166-2236(92)90103-F

10.1152/jn.1998.79.1.439

10.1016/S0168-0102(98)00099-6

10.1016/S0306-4522(99)00553-9

10.1016/S0092-8674(01)00341-5

10.1038/74823

Grynkiewicz G, 1985, J Biol Chem, 260, 3440, 10.1016/S0021-9258(19)83641-4

10.1523/JNEUROSCI.19-12-04695.1999

10.1016/0301-0082(94)90049-3

10.1523/JNEUROSCI.19-08-02843.1999

10.1016/S0306-4522(01)00149-X

10.1113/jphysiol.1997.sp021900

10.1016/S0896-6273(00)80265-2

10.1113/jphysiol.1995.sp020882

10.1016/0896-6273(95)90008-X

10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5

10.1152/jn.1991.65.2.247

10.1016/S0005-2736(98)00112-6

10.1523/JNEUROSCI.22-11-04412.2002

10.1016/0006-8993(92)91562-S

10.1523/JNEUROSCI.15-07-05065.1995

10.1002/(SICI)1096-9861(19960819)372:2<167::AID-CNE1>3.0.CO;2-1

10.1523/JNEUROSCI.16-20-06414.1996

10.1074/jbc.271.27.16245

10.1002/(SICI)1097-4695(19971120)33:6<781::AID-NEU6>3.0.CO;2-5

10.1038/16697

10.1007/BF00247935

10.1016/0165-0270(95)00075-5

10.1113/jphysiol.1995.sp020973

10.1152/ajpcell.1991.261.5.C906

10.1111/j.1365-2990.1981.tb00089.x

10.1002/syn.890020104

10.1002/glia.440070112

10.1152/jn.1999.81.4.1939

10.1523/JNEUROSCI.16-13-04283.1996

10.1002/ar.1092380211

10.1038/318558a0

10.1007/s004240050160

Yamada J, 2002, Soc Neurosci Abstr, 28, 148.4

10.1016/0896-6273(91)90243-S