Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants
Tài liệu tham khảo
10.1021/bi00423a001
10.1073/pnas.95.12.7220
10.1289/ehp.95103s39
10.1007/s002329900192
10.1073/pnas.97.9.4991
10.1073/pnas.210214197
Nieboer E. Richardson D.H.S. (1980) The replacement of the non descript term “heavy metal” by biologically and chemically significant classification of metal ions. Environ. Pollut. 1, 3–8.
10.1146/annurev.bi.41.070172.000515
Kamiski L.P. (1992) Hg2+ and Cu+ are ionophores, mediating Cl−/OH− exchange in liposomes and rabbit renal brush border membranes. J. Biol. Chem. 267, 12218–12250.
Reed, R.H., Gadd, G.M. Metal Tolerance in Eukaryotic and Prokaryotic Algae. Shaw, A.J., Ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. 1990. CRC Press, Boca Raton, FL. 105–118 . (Chapter 8)
Kaplan D. Heimer Y.M. Abelovich A. Goldsbrough P.B. (1995) Cadmium toxicity and resistance in Chlorella sp . Plant Sci. 109, 129–137.
10.1016/S0378-1119(96)00422-2
Macfie S.M. Welburn P.M. (2000) The cell wall as barrier to uptake of metals ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol. 39, 413–419.
Cobbett, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 2000. 825–832
10.1016/S0006-291X(88)81045-3
10.1073/pnas.85.23.8815
10.1006/bbrc.1994.1577
10.1007/BF00425162
10.1034/j.1399-3054.2002.1150214.x
10.1126/science.230.4726.674
Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212, 2001. 475–486 Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M. From vacuolar GS-X pumps to multispecific ABC transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 1998. 727–760
10.1074/jbc.270.9.4721
10.1104/pp.108.3.1293
10.1073/pnas.84.2.439
10.1016/0014-5793(91)80763-S
10.1016/0076-6879(95)51106-7
10.1146/annurev.arplant.49.1.249
10.1105/tpc.10.9.1539
10.1074/jbc.M009574200
10.1104/pp.122.3.737
10.1078/0176-1617-00733
Thomas D. Surdin-Kerjan Y. (1997) Metabolism of sulphur amino acids in Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 61, 503–532.
10.1002/(SICI)1097-0061(19990930)15:13<1365::AID-YEA468>3.0.CO;2-U
10.1002/yea.798
10.1146/annurev.micro.51.1.73
10.1104/pp.120.3.637
10.1146/annurev.arplant.51.1.141
10.1146/annurev.arplant.52.1.163
10.1007/BF00951460
Breton A. Surdin-Kerjan Y. (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J. Bacteriol. 132, 224–232.
Cherest H. Davidian H.C. Thomas D. Benes V. Ansorge W. Surdin-Kerjan Y. (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae . Genetics 145, 627–635.
Bussey H. Storms R.K. Ahmed A. Albermann K. Allen E. Ansorge W. Araujo R. Aparicio A. Barrell B. Badcock K. Benes V. Botstein D. Bowman S. Bruckner M. Carpenter J. Cherry J.M. Chung E. Churcher C. Coster F. Davis K. Davis R.W. Dietrich F.S. Delius H. DiPaolo T. Hani J. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature 387, 103–105.
10.1046/j.1365-313x.2000.00768.x
10.1046/j.0960-7412.2001.01231.x
10.1104/pp.014712
10.1073/pnas.94.20.11102
10.1023/A:1006230131841
10.1016/S0014-5793(00)01615-X
Yildiz, F.H., Davies, J.P., Grossman, A.R. Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol. 104, 1994. 981–987, Yildiz, F.H., Davies, J.P., Grossman, A.R. Sulfur availabilty and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol. 112, 1996. 669–675
10.1042/bj2320357
10.1007/s00425-003-1076-6
10.1093/dnares/10.2.67
10.1093/jexbot/50.340.1713
10.1006/bbrc.1998.8751
10.1007/s004250050112
10.1104/pp.70.1.39
Cornish-Bowden A. Cardenas M.L. (2001) Information transfer in metabolic pathways. Eur. J. Biochem. 268, 6616–6624.
10.1093/emboj/20.3.316
10.1021/bi010367w
Renosto F. Martin R.L. Wailes L.M. Daley L.A. Segel I.H. (1990) Regulation of inorganic sulfate activation in filamentous fungi. Allosteric inhibition of ATP sulfurylase by 3′-phosphoadenosine-5′-phosphosulfate. J. Biol. Chem. 265, 10300–10308.
10.1006/abbi.1993.1590
10.1104/pp.124.2.715
Li J. Saidha T. Schiff J.A. (1991) Purification and properties of two forms of ATP sulfurylase from Euglena . Biochim. Biophys. Acta 1078, 68–76.
10.1074/jbc.271.21.12227
10.1046/j.1365-313X.1994.6010105.x
10.1104/pp.116.4.1307
10.1006/abbi.1995.0026
10.1016/S0167-4838(98)00245-3
10.1073/pnas.95.14.8404
10.1073/pnas.93.23.13377
10.1006/abbi.2001.2453
Korch C. Mountain H.A. Bystrom A.S. (1991) Cloning, nucleotide sequence, and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae . Mol. Gen. Genet. 229, 96–108.
Thomas D. Barbey R. Surdin-Kerjan Y. (1990) Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3′-phosphoadenylylsulfate reductase structural gene. J. Biol. Chem. 265, 15518–15524.
10.1074/jbc.M202152200
Foster B.A. Thomas S.M. Mahr J.A. Renosto F. Patel H.C. Segel I.H. (1994) Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum. Identification of a likely allosteric domain. J. Biol. Chem. 269, 19777–19786.
Koprivova A. Meyer A.J. Schween G. Herschbach C. Reski R. Kopriva S. (2002) Functional knockout of the adenosine 5-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. J. Biol. Chem. 277, 32195–32201.
10.1104/pp.123.3.1087
10.1042/bj2530533
10.1016/S0162-0134(00)00138-0
10.1016/0167-4838(82)90257-6
10.1093/oxfordjournals.jbchem.a022156
10.1016/S0378-1119(98)00155-3
10.1016/0167-4838(96)00066-0
10.1007/s007260200012
Cherest H. Surdin-Kerjan Y. (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130, 51–58.
10.1016/0076-6879(87)43080-2
10.1016/S1369-5266(00)00063-7
10.1007/s007260170045
10.1074/jbc.M009774200
10.1007/BF01321531
10.1016/S0378-1119(00)00261-4
10.1104/pp.118.2.471
10.1016/S1360-1385(01)02086-6
10.1146/annurev.bi.52.070183.001155
10.1073/pnas.91.21.10059
10.1002/(SICI)1097-4652(200002)182:2<163::AID-JCP4>3.0.CO;2-1
10.1074/jbc.271.29.17485
Griffith O.W. (1982) Mechanisms of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem. 257, 13704–13712.
10.1073/pnas.85.8.2464
Kelly B.S. Antholine W.E. Griffith O.W. (2001) Escherichia coliγ-glutamylcysteine synthetase. J. Biol. Chem. 277, 50–58.
Griffith O.W. Mulcahy R.T. (1999) The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73, 209–267.
10.1042/bj3260563
10.1016/0014-5793(95)01253-1
10.1042/0264-6021:3630833
10.1007/BF00248673
10.1074/jbc.M108254200
10.1016/S0031-9422(99)00493-8
Avilés C. Loza-Tavera H. Terry N. Moreno-Sánchez R. (2003) Mercury pretreatment selects an enhanced cadmium accumulating phenotype in Euglena gracilis . Arch. Microbiol. 180, 1–10.
Berlich M. Menge S. Bruns I. Schimdt J. Schneider B. Krauss G.J. (2002) Coumarins give misleading absorbance with Ellman's reagent suggestive of thiol conjugates. Analyst 127, 333–336.
10.1078/0176-1617-00071
10.1074/jbc.M002997200
10.1074/jbc.M313142200
10.1073/pnas.86.18.6838
10.1105/tpc.11.6.1153
10.1146/annurev.bi.59.070190.000425
10.1093/emboj/18.12.3325
10.1093/jxb/erg205
10.1074/jbc.C100152200
Clemens S. Schroeder J.I. Degenkolb T. (2001) Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur. J. Biochem. 268, 3640–3643.
10.1016/S1369-5266(00)80067-9
10.1074/jbc.M314325200
10.1104/pp.107.4.1059
10.1007/s00425-003-1091-7
10.1139/o91-018
10.1002/(SICI)1097-0061(19990330)15:5<385::AID-YEA382>3.0.CO;2-6
Imai K. Obata H. Shimizu K. Komiya T. (1996) Conversion of glutathione into cadystins and their analogs catalyzed by carboxypeptidase Y. Biosci. Biotechnol. Biochem. 60, 1193–1194.
10.1002/(SICI)1097-0061(19960915)12:11<1153::AID-YEA16>3.0.CO;2-2
10.1016/S0378-1097(02)01175-8
10.1007/s007260200011
Richman P.G. Meister A. (1975) Regulation of γ-glutamylcysteine synthetase by non-allosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422–1426.
Arisi A.C. Noctor G. Foyer C.H. Jouanin L. (1997) Modification of thiol contents in poplars (Populus tremula×P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203, 272–362.
10.1105/tpc.11.7.1277
10.1007/BF02411460
10.1111/j.1399-3054.1997.tb04781.x
10.1104/pp.109.1.195
Momose Y. Iwahashi H. (2003) Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ. Toxicol. Chem. 20, 2353–2360.
10.1016/S1097-2765(02)00500-2
10.1046/j.1365-313X.2003.01658.x
10.1046/j.1365-313X.1997.12040875.x
10.1023/A:1006169717355
10.1104/pp.002659
10.1074/jbc.M008708200
10.1046/j.1365-2958.1997.2081572.x
Dormer U.H Westwater J. Stephen D.W.S. Jamieson D.J. (2002) Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene. Biochim. Biophys. Acta 1576, 23–29.
10.1091/mbc.E02-08-0499
10.1023/A:1005929022061
10.1073/pnas.95.20.12049
10.1007/s00425-002-0821-6
10.1007/s004380051199
10.1023/A:1006148815106
10.1046/j.1365-313X.1999.00416.x
10.1046/j.1365-313X.2002.01391.x
10.1093/emboj/17.21.6327
10.1074/jbc.M004167200
10.1093/emboj/16.9.2441
Lee J. Godon C. Lagniel G. Spector D. Garin J. Labarre J. Toledano M.B. (1997) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040–16046.
10.1128/MCB.14.9.5832
10.1073/pnas.94.1.42
Salt D.E. Wagner G.J. (1993) Cadmium transport across tonoplast of vesicles from oat roots. J. Biol. Chem. 17, 12297–12302.
Speiser D.M. Ortiz D.F. Kreppel L. Scheel G. McDonald G. Ow D.W. (1992) Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe . Mol. Cell Biol. 12, 5301–5310.
10.1006/abbi.1993.1367
Wu J.S. Sung H.Y. Juang R.H. (1995) Transformation of cadmium-binding complexes during cadmium sequestration in fission yeast. Biochem. Mol. Biol. Inter. 36, 1169–1175.
10.1046/j.1365-2958.2001.02624.x
Ortiz D.F. Kreppel L. Speiser D.M. Scheel G. McDonald G. Ow D.W. (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11, 3491–3499.
10.1074/jbc.271.11.6509
10.1128/EC.1.3.391-400.2002
10.1074/jbc.M103104200
10.1074/jbc.M205052200
Williams L.E. Pittman J.K. Hall J.L. (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta 1465, 104–126.
10.1016/S0005-2736(00)00138-3
10.1104/pp.126.4.1646
10.1074/jbc.272.18.11763
10.1074/jbc.274.8.4863
Conklin D.S. McMaster J.A. Culbertson M.R. Kung C. (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae . Mol. Cell Biol. 12, 3678–3688.
Conklin D.S. Culbertson M.R. Kung C. (1994) Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae . Mol. Gen. Genet. 244, 303–311.
10.1093/emboj/19.12.2845
MacDiarmid C.W. Milanick M.A. Eide D.J. (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J. Biol. Chem. 279, 15065–15072.
10.1007/s00425-001-0677-1
10.1104/pp.124.1.125
10.1104/pp.99.1.8
10.1016/0162-0134(92)80019-R
Dameron C.T. Smith B.R. Winge D.R. (1989) Glutathione-coated cadmium-sulfide crystallites in Candida glabrata . J. Biol. Chem. 264, 17355–17360.
Coppelloti O. (1989) Glutathione, cysteine and acid-soluble thiol levels in Euglena gracilis cells exposed to copper and cadmium. Comp. Biochem. Physiol. 94C, 35–40.
Nagel K. Adelmeier U. Voigt J. (1996) Subcellular distribution of cadmium in the unicellular green alga Chamydomonas reinhardtii . J. Plant Physiol. 149, 86–90.
10.1007/s001289900644
10.1016/S0006-291X(02)00265-6
10.1046/j.1469-8137.1999.00447.x
10.1105/tpc.004853
10.1007/s007260170026
10.1104/pp.121.4.1169
10.1104/pp.119.1.73
10.1091/mbc.8.9.1699
Kim S.J. Shin Y.H. Park E.H. Sa J.H. Lim C.J. (2003) Regulation of the gene encoding glutathione synthetase from fission yeast. J. Biochem. Mol. Biol. 36, 326–331.
10.1104/pp.014118
10.1042/bj1330541
10.1007/BF00413024
10.1007/BF00408300
10.1002/yea.320100306
Yamagata S. D'Andrea R.J. Fujisaki S. Isaji M. Nakamura K. (1993) Cloning and bacterial expression of the CYS3 gene encoding cystathionine γ-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J. Bacteriol. 175, 4800–4808.
Dennda G. Kula M.R. (1986) Purification and evaluation of the glutathione-synthesizing enzymes from Candida boidinni for cell-free synthesis of glutathione. J. Biotechnol. 4, 143–158.