Fundamental phenomena governing heat transfer during rolling

Metallurgical Transactions A - Tập 24 Số 6 - Trang 1307-1320 - 1993
Chen, W. C.1, Samarasekera, I. V.1, Hawbolt, E. B.1
1Department of Metals and Materials Engineering, The Center for Metallurgical Process Engineering, The University of British Columbia, Vancouver, Canada

Tóm tắt

To quantify the effect of roll chilling on the thermal history of a slab during hot rolling, tests were conducted at the Canada Center for Mineral and Energy Technology (CANMET) and at the University of British Columbia (UBC). In these tests, the surface and the interior temperatures of specimens were recorded during rolling using a data acquisition system. The corresponding heat-transfer coefficients in the roll bite were back-calculated by a trial-and-error method using a heat-transfer model. The heat-transfer coefficient was found to increase along the arc of contact and reach a maximum, followed by a decrease, until the exit of the roll bite. Its value was influenced by rolling parameters, such as percent reduction, rolling speed, rolling temperature, material type,etc. It was shown that the heat-transfer coefficient in the roll gap was strongly dependent on the roll pressure, and the effect of different variables on the interfacial heat-transfer coefficient can be related to their influence on pressure. At low mean roll pressure, such as in the case of rolling plain carbon steels at elevated temperature, the maximum heat-transfer coefficient in the roll bite was in the 25 to 35 kW/m2 °C range. As the roll pressure increased with lower rolling temperature and higher deformation resistance of stainless steel and microalloyed grades, the maximum heat-transfer coefficient reached a value of 620 kW/m2 °C. Obviously, the high pressure improved the contact between the roll and the slab surface, thereby reducing the resistance to heat flow. The mean roll-gap heat-transfer coefficient at the interface was shown to be linearly related to mean roll pressure. This finding is important because it permitted a determination of heat-transfer coefficients applicable to industrial rolling from pilot mill data. Thus, the thermal history of a slab during rough rolling was computed using a model in which the mean heat-transfer coefficient between the roll and the slab was determined from an estimate of the rolling load. It was found that the heat loss of a slab to the roll was 33 pet of the total, which emphasizes the importance of accurately characterizing the heat-transfer coefficient in the roll bite during hot rolling.

Từ khóa


Tài liệu tham khảo

citation_journal_title=J. Mater. Shap. Technol.; citation_author=M.P. Pietrzyk, J.G. Lenard; citation_volume=7; citation_publication_date=1989; citation_pages=117-26; citation_doi=10.1007/BF02833778; citation_id=CR1

citation_title=Mathematical Models in Metallurgical Process Development; citation_publication_date=1970; citation_id=CR2; citation_author=F. Hollander; citation_publisher=The Iron and Steel Institute

citation_title=Proc. Int. Symp. on the Mathematical Modelling of the Hot Rolling of Steel; citation_publication_date=1990; citation_id=CR3; citation_author=I.V. Samarasekera; citation_publisher=Pergamon Press

citation_journal_title=J. Iron Steel Inst.; citation_author=F. Seredynski; citation_volume=211; citation_publication_date=1973; citation_pages=197-203; citation_id=CR4

citation_journal_title=J. Jpn. Soc. Technol. Plast.; citation_author=Jun-ichi Kokado, N. Hatta; citation_volume=19; citation_publication_date=1978; citation_pages=213-213; citation_id=CR5

citation_journal_title=Metall. Trans. A; citation_author=A.A. Tseng, F.H. Lin, A.S. Gunderia, D.S. Ni; citation_volume=20A; citation_publication_date=1989; citation_pages=2305-320; citation_doi=10.1007/BF02666666; citation_id=CR6

citation_journal_title=Trans. Iron Steel Inst. Jpn.; citation_author=Ken-ichi Yanagi; citation_volume=16; citation_publication_date=1976; citation_pages=11-19; citation_doi=10.2355/isijinternational1966.16.11; citation_id=CR7

P.G. Stevens, K.P. Ivens, and P. Harper:J. Iron Steel Inst., 1971, Jan., pp. 1–11.

A.J. Fletch, A.G. Gibson, and J.A. Gonzales:Met. Technol., 1984, pp. 156–66.

citation_journal_title=Mater. Sci. Technol.; citation_author=CM. Sellars; citation_volume=1; citation_publication_date=1985; citation_pages=325-32; citation_doi=10.1179/mst.1985.1.4.325; citation_id=CR10

citation_journal_title=Metall. Trans. B.; citation_author=C. Devadas, I.V. Samarasekera, E.B. Hawbolt; citation_volume=22A; citation_publication_date=1991; citation_pages=307-19; citation_doi=10.1007/BF02656800; citation_id=CR11

citation_inbook_title=Developments in Heat Transfer; citation_publication_date=1964; citation_pages=354-70; citation_id=CR12; citation_author=H. Fenech; citation_author=J.J. Henry; citation_author=W.M. Rohsenow; citation_publisher=MIT Press

citation_journal_title=Ann. CIRP; citation_author=T. Wanheim, N. Bay; citation_volume=27; citation_issue=1; citation_publication_date=1976; citation_pages=189-93; citation_id=CR13

citation_title=Thermal-Mechanical Modelling of the Flat Rolling Process; citation_publication_date=1991; citation_id=CR14; citation_author=M. Pietrzyk; citation_author=J.G. Lenard; citation_publisher=Material Research and Engineering, Springer-Verlag

citation_title=Metal Forming and Finite Element Method; citation_publication_date=1989; citation_id=CR15; citation_author=S. Kobayash; citation_author=S.I. Oh; citation_author=T. Altan; citation_publisher=Oxford Series on Manufacturing, Oxford University Press

citation_journal_title=Int. J. Mech. Sci.; citation_author=W.R.D. Wilson, S. Sheu; citation_volume=30; citation_issue=7; citation_publication_date=1988; citation_pages=475-90; citation_doi=10.1016/0020-7403(88)90002-1; citation_id=CR16

W.R.D. Wilson:ASME Winter Annual Meeting, Dec. 1988, Chicago, IL.

citation_title=OMEGA Complete Temperature Measurement Handbook and Encyclopedia; citation_publication_date=1988; citation_id=CR18; citation_publisher=OMEGA Engineering, Inc.

citation_title=Hot Rolling of Steel; citation_publication_date=1983; citation_id=CR19; citation_author=W.L. Robert; citation_publisher=Manufacturing Engineering and Materials Processing, Marcel Dekker, Inc.

citation_journal_title=lronmaking and Steelmaking; citation_author=W.C. Chen, I.V. Samarasekera, E.B. Hawbolt; citation_volume=20; citation_issue=1; citation_publication_date=1993; citation_pages=1-13; citation_id=CR20

citation_journal_title=Metall. Trans. B; citation_author=B.G. Thomas, I.V. Samarasekera, J.K. Brimacombe; citation_volume=15B; citation_publication_date=1984; citation_pages=307-18; citation_doi=10.1007/BF02667334; citation_id=CR21

citation_journal_title=J. Mater. Process. Technol.; citation_author=A. Kumar, I.V. Samarasekera, E.B. Hawbolt; citation_volume=30; citation_publication_date=1992; citation_pages=91-114; citation_doi=10.1016/0924-0136(92)90041-P; citation_id=CR22

citation_journal_title=Proc. Inst. Mech. Eng.; citation_author=R.B. Sims; citation_volume=168; citation_publication_date=1954; citation_pages=191-200; citation_doi=10.1243/PIME_PROC_1954_168_023_02; citation_id=CR23