A comprehensive model of PMOS NBTI degradation

Microelectronics Reliability - Tập 45 - Trang 71-81 - 2005
M.A. Alam1, S. Mahapatra2
1AGERE Systems, Allentown, PA, USA
2Department of Electrical Engineering, IIT Bombay, India

Tài liệu tham khảo

Deal, 1967, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon, J. Electrochem. Soc, 114, 266, 10.1149/1.2426565 Strain, 1973, On the formation of surface states during stress aging of thermal Si–SiO2 interfaces, J. Electrochem. Soc, 120, 90, 10.1149/1.2403408 Frohman-Bentchkowsky, 1971, A fully decoded 2048-bit electrically programmable FAMOS readonly memory, IEEE J. Solid State Circuits, 6, 301, 10.1109/JSSC.1971.1050191 Nakagiri, 1974, Jpn. J. Appl. Phys, 13, 1619, 10.1143/JJAP.13.1610 Jeppson, 1977, Negative bias stress of MOS devices at high electric fields and degradation of MOS devices, J. Appl. Phys, 48, 2004, 10.1063/1.323909 1991 Chaparala P, Shibley J, Lim P. Threshold voltage drift in p-MOSFETs due to NBTI and HCI. In: Proc Int Reliability Workshop, 2000. p. 95–7 La Rosa G, et al. NBTI––channel hot carrier effects in p-MOSFETs in advanced CMOS technologies. In: Proc Int Reliability Phys Symp, 1997. p. 282–6 Uwasawa K, Yamamoto T, Mogami T. A new degradation mode of scaled p+ polysilicon gate p-MOSFETs induced by bias temperature instability. In: Proc Int Electron Device Meet, 1995. p. 871–4 Kimizuka N, Yamamoto T, Mogami T, Yamaguchi K, Imai K, Horiuchi T. The impact of bias temperature instability for direct tunneling ultra-thin gate oxide on MOSFET scaling. In: Proc VLSI Tech Symp, 1999. p. 73–4 Yamamoto, 1999, Bias temperature instability in scaled p+ polysilicon gate p-MOSFETs, IEEE Trans. Electron Devices, 46, 921, 10.1109/16.760398 Makabe M, Kubota T, Kitano T. Bias temperature degradation of p-MOSFETs: mechanism and suppression. In: Proc Int Reliability Phys Symp, 2000. p. 205–9 Ogawa, 1995, Generalized diffusion–reaction model for the low-field charge build up instability at the Si–SiO2 interface, Phys. Rev. B, 51, 4218, 10.1103/PhysRevB.51.4218 Alam M, Weir B, Silverman P. The prospect of using thin oxides for silicon nano transistor. In: Proc Int Workshop on Gate Insulator, 2001. p. 10–3 Mahapatra S, Alam MA. A predictive reliability model for PMOS bias temperature degradation. In: Proc Int Electron Device Meet, 2002. p. 505–9 Mahapatra S, Bharat Kumar P, Alam MA. A new observation of enhanced bias temperature instability in thin gate oxide p-MOSFETs. In: Proc Int Electron Device Meet, 2003. p. 337–41 Mitani Y, Nagamine M, Satake H, Toriumi A. NBTI mechanism in ultra-thin gate dielectric-nitrogen-originated mechanism in SiON. In: Proc Int Electron Device Meet, 2002. p. 509–12 Schroder, 2003, Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing, J. Appl. Phys, 94, 1, 10.1063/1.1567461 Nishida Y, et al. SoC CMOS technology for NBTI/HCI immune I/O and analog circuits implementing surface and buried channel structures. In: Proc Int Electron Device Meet, 2001. p. 869–72 Alam M. A critical examination of the mechanics of dynamic NBTI for p-MOSFETs. In: Proc Int Electron Device Meet, 2003. p. 346–9 Chen G, et al. Dynamic NBTI of PMOS transistors and its impact on device lifetime. In: Proc Int Reliability Phys Symp, 2003. p. 196–202 Huard V, Monsieur F, Ribes G, Bruyere S. Evidence for hydrogen-related defects during NBTI stress in p-MOSFETs. In: Proc Int Reliability Phys Symp, 2003. p. 178–82 Tsujikawa S, et al. Negative bias temperature instability of pMOSFETs with ultra-thin SiON gate dielectrics. In: Proc Int Reliability Phys Symp, 2003. p. 183–8 McPherson, 2000, Complementary model for intrinsic time dependent dielectric breakdown in SiO2 dielectrics, J. Appl. Phys, 88, 5351, 10.1063/1.1318369 G. La Rosa, IRPS Tutorial, 2003 Blat, 1991, Mechanism of negative bias temperature instability, J. Appl. Phys, 69, 1712, 10.1063/1.347217 Liu, 2002, Mechanism of threshold voltage shift (ΔVth) caused by negative bias temperature instability (NBTI) in deep submicron pMOSFETs, Jpn. J. Appl. Phys, 41, 2423, 10.1143/JJAP.41.2423 Alam M, Bude J, Ghetti A. Field acceleration for oxide breakdown––can an accurate anode hole injection model resolve the E vs. 1/E controversy? In: Proc Int Reliability Phys Symp, 2000. p. 21–6 Soon, 2003, Study of negative-bias temperature-instability-induced defects using first-principle approach, Appl. Phys. Lett, 83, 3063, 10.1063/1.1614415 Tan, 2003, Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations, Appl. Phys. Lett, 82, 1881, 10.1063/1.1563045 Ushio, 2002, Interface structures generated by negative-bias temperature instability in Si/SiO2 and Si/SiOxNy interfaces, Appl. Phys. Lett, 81, 1818, 10.1063/1.1504872 Reed, 1988, Chemistry of Si–SiO2 interface trap annealing, J. Appl. Phys, 63, 5776, 10.1063/1.340317 Scher, 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455, 10.1103/PhysRevB.12.2455 Monroe, 1991, Hopping in band tails far from equilibrium Zallen, 1983 Kakalios, 1987, Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon, Phys. Rev. Lett, 59, 1037, 10.1103/PhysRevLett.59.1037 Shkrob, 1996, Time-resolved EPR of spin-polarized mobile H atoms in amorphous silica: The involvement of small polarons, Phys. Rev. B, 54, 15073, 10.1103/PhysRevB.54.15073 Reddy V, et al. Impact of negative bias temperature instability on digital circuit reliability. In: Proc Int Reliability Phys Symp, 2002. p. 248–54