Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

Springer Science and Business Media LLC - Tập 11 - Trang 1-12 - 2010
Nuria Fonknechten1,2,3, Sébastien Chaussonnerie1,2,3, Sabine Tricot1,2,3, Aurélie Lajus1,2,3, Jan R Andreesen4, Nadia Perchat1,2,3, Eric Pelletier1,2,3, Michel Gouyvenoux1,2,3, Valérie Barbe1,2,3, Marcel Salanoubat1,2,3, Denis Le Paslier1,2,3, Jean Weissenbach1,2,3, Georges N Cohen5, Annett Kreimeyer1,2,3
1CEA, DSV, Institut de Génomique, Genoscope, Evry, France
2CNRS-UMR 8030, Evry, France
3UEVE, Université d'Evry, Evry, France
4Institute of Biology/Microbiology, University of Halle, Halle, Germany
5Institut Pasteur, Paris Cedex 15, France

Tóm tắt

Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Analysis of the C. sticklandii genome and additional experimental procedures have improved our understanding of anaerobic amino acid degradation. Several specific metabolic features have been detected, some of which are very unusual for anaerobic fermenting bacteria. Comparative genomics has provided the opportunity to study the lifestyle of pathogenic and non-pathogenic clostridial species as well as to elucidate the difference in metabolic features between clostridia and other anaerobes.

Tài liệu tham khảo

Elsden SR, Hilton MG: Amino acid utilization patterns in clostridial taxonomy. Arch Microbiol. 1979, 123: 137-41. 10.1007/BF00446812. Mead GC: The amino acid-fermenting clostridia. J Gen Microbiol. 1971, 67: 47-56. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA: The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994, 44: 812-26. 10.1099/00207713-44-4-812. Kim J, Hetzel M, Boiangiu CD, Buckel W: Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiology Reviews. 2004, 28: 455-68. 10.1016/j.femsre.2004.03.001. Kim J, Darley DJ, Buckel W, Pierik AJ: An allylic ketyl radical intermediate in clostridial amino-acid fermentation. Nature. 2008, 452: 239-42. 10.1038/nature06637. Stadtman TC: Discoveries of vitamin B12 and selenium enzymes. Annu Rev Biochem. 2002, 71: 1-16. 10.1146/annurev.biochem.71.083101.134224. Stickland LH: Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem J. 1934, 28: 1746-59. Andreesen JR: Glycine reductase mechanism. Curr Opin Chem Biol. 2004, 8: 454-61. 10.1016/j.cbpa.2004.08.002. Arkowitz RA, Abeles RH: Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. Biochemistry. 1991, 30: 4090-7. 10.1021/bi00230a039. JenneyJr FE, Verhagen MF, Cui X, Adams MW: Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science. 1999, 286: 306-9. 10.1126/science.286.5438.306. Nisman B: The Stickland reaction. Bacteriol Rev. 1954, 18: 16-42. Stadtman TC, WhiteJr FH: Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J Bacteriol. 1954, 67: 651-7. Stadtman TC, Barker HA: Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. J Bacteriol. 1951, 62: 269-80. Andreesen J, Bahl H, Gottschalk G: Introduction to the Physiology and Biochemistry of the Genus Clostridium. Clostridia. Edited by: Minton N, Clarke D. 1989, New York and London: Plenum Press, 27-62. Barker HA: Amino acid degradation by anaerobic bacteria. Annu Rev Biochem. 1981, 50: 23-40. 10.1146/annurev.bi.50.070181.000323. Stadtman TC: On the metabolism of an amino acid fermenting Clostridium. J Bacteriol. 1954, 67: 314-20. Elsden SR, Hilton MG: Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch Microbiol. 1978, 117: 165-72. 10.1007/BF00402304. Elsden SR, Hilton MG, Waller JM: The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol. 1976, 107: 283-8. 10.1007/BF00425340. Schäfer R, Schwartz AC: Catabolism of purines in clostridium sticklandii. Zentralbl Bakteriol Orig A. 1976, 235: 165-72. Schwartz AC, Schäfer R: New amino acids, and heterocyclic compounds participating in the Stickland reaction of Clostridium sticklandii. Arch Microbiol. 1973, 93: 267-76. Stadtman TC, McClung LS: Clostridium sticklandii nov. spec. J Bacteriol. 1957, 73: 218-9. Jackson S, Calos M, Myers A, Self WT: Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol. 2006, 188: 8487-95. 10.1128/JB.01370-06. Golovchenko N, Belokopytov B, Chuvil'skaya N, Akimenko V: Minimal synthetic culture medium for the bacterium Clostridium sticklandii. Applied Biochemistry and Microbiology. 1985, 20: 430-434. Zein F, Zhang Y, Kang YN, Burns K, Begley TP, Ealick SE: Structural insights into the mechanism of the PLP synthase holoenzyme from Thermotoga maritima. Biochemistry. 2006, 45: 14609-20. 10.1021/bi061464y. Golovchenko NP, Belokopytov BF, Akimenko VK: [Glucose metabolism in Clostridium sporogenes and Clostridium sticklandii bacteria]. Mikrobiologija. 1983, 52: 869-74. Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF: Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann N Y Acad Sci. 2008, 1125: 230-41. 10.1196/annals.1419.006. Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW: Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol. 2004, 70: 5595-602. 10.1128/AEM.70.9.5595-5602.2004. Woolfolk CA, Woolfolk BS, Whiteley HR: 2-oxypurine dehydrogenase from Micrococcus aerogenes. I. Isolation, specificity, and some chemical and physical properties. J Biol Chem. 1970, 245: 3167-78. Fonknechten N, Perret A, Perchat N, Tricot S, Lechaplais C, Vallenet D, Vergne C, Zaparucha A, Le Paslier D, Weissenbach J: A conserved gene cluster rules anaerobic oxidative degradation of L-ornithine. J Bacteriol. 2009, 191: 3162-7. 10.1128/JB.01777-08. Kenklies J, Ziehn R, Fritsche K, Pich A, Andreesen JR: Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Microbiology. 1999, 145: 819-26. 10.1099/13500872-145-4-819. Andreesen JR: Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek. 1994, 66: 223-37. 10.1007/BF00871641. Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F: Eubacterium acidaminophilum sp.nov., a versatile amino aacid-degrading anaerobe producing or utilizing H2 or formate. Arch Microbiol. 1988, 150: 254-266. 10.1007/BF00407789. Wagner M, Andreesen JR: Purification and characterization of threonine dehydrogenase from Clostridium sticklandii. Arch Microbiol. 1995, 163: 286-90. 10.1007/BF00393382. Costilow RN, Laycock L: Ornithine cyclase (deaminating). Purification of a protein that converts ornithine to proline and definition of the optimal assay conditions. J Biol Chem. 1971, 246: 6655-60. Chang CH, Frey PA: Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from Clostridium sticklandii. J Biol Chem. 2000, 275: 106-14. 10.1074/jbc.275.1.106. Kreimeyer A, Perret A, Lechaplais C, Vallenet D, Medigue C, Salanoubat M, Weissenbach J: Identification of the last unknown genes in the fermentation pathway of lysine. J Biol Chem. 2007, 282: 7191-7. 10.1074/jbc.M609829200. Stadtman T: Lysine metabolism by Clostridia. Advances in Enzymology and Related Areas of Molecular Biology. 1973, 38: 413-448. Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F: The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA. 2008, 105: 2128-33. 10.1073/pnas.0711093105. Buckel W, Barker HA: Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974, 117: 1248-60. Buckel W: Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol. 2001, 57: 263-73. 10.1007/s002530100773. Fryer TF, Mead GC: Development of a selective medium for the isolation of Clostridium sporogenes and related organisms. J Appl Bacteriol. 1979, 47: 425-31. Cone JE, Del Rio RM, Davis JN, Stadtman TC: Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA. 1976, 73: 2659-63. 10.1073/pnas.73.8.2659. Turner DC, Stadtman TC: Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch Biochem Biophys. 1973, 154: 366-81. 10.1016/0003-9861(73)90069-6. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A, Rouy Z, Roche D, Salvignol G, Scarpelli C: MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford). 2009, 2009: bap021 Kabisch U: Proteinchemische und molekularbiologische Charakterisierung der D-Prolin-Reduktase aus Clostridium sticklandii. PhD thesis. 2001, Halle: Martin-Luther University Kabisch U, Gräntzdörffer A, Schierhorn A, Rücknagel KP, Andreesen JR, Pich A: Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J Biol Chem. 1999, 274: 8445-54. 10.1074/jbc.274.13.8445. Eversmann B: Molekulare und biochemische Untersuchungen zu Komponenten der D-Prolin-Reduktase und Glycin-Reduktase von Clostridium sticklandii. PhD thesis. 2004, Halle: Martin-Luther University Lee BC, Dikiy A, Kim HY, Gladyshev VN: Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta. 2009, 1790: 1471-7. Seto B, Stadtman TC: Purification and properties of proline reductase from Clostridium sticklandii. J Biol Chem. 1976, 251: 2435-9. Lovitt RW, Kell DB, Morris JG: Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection. FEMS Microbiology Letters. 1986, 36: 269-273. 10.1111/j.1574-6968.1986.tb01708.x. Seto B: The Stickland reaction. Diversity in Bacterial Respiratory Systems. Edited by: Knowles C. 1980, Boca Raton: CRC Press, 2: 50-64. Uhde A: Wachstumsphysiologische Untersuchungen zum Abbau von Aminosäuren und mögliche Funktion eines elektronentransferierenden Flavoproteons bei Clostridium sticklandii. Dipl thesis. 1990, Göttingen: Georg-August University Schwartz AC, Müller W: NADH-dependent reduction of D-proline in Clostridium sticklandii. Reconstitution from three fractions containing NADH dehydrogenase, D-proline reductase, and a third protein factor. Arch Microbiol. 1979, 123: 203-8. 10.1007/BF00446821. Bednarski B, Andreesen JR, Pich A: In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue. Eur J Biochem. 2001, 268: 3538-44. 10.1046/j.1432-1327.2001.02257.x. Gröbe T, Reuter M, Gursinsky T, Söhling B, Andreesen JR: Peroxidase activity of selenoprotein GrdB of glycine reductase and stabilisation of its integrity by components of proprotein GrdE from Eubacterium acidaminophilum. Arch Microbiol. 2007, 187: 29-43. 10.1007/s00203-006-0169-6. Imlay JA: Iron-sulphur clusters and the problem with oxygen. Mol Microbiol. 2006, 59: 1073-82. 10.1111/j.1365-2958.2006.05028.x. Hillmann F, Fischer RJ, Saint-Prix F, Girbal L, Bahl H: PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol. 2008, 68: 848-60. 10.1111/j.1365-2958.2008.06192.x. Brüggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A: The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA. 2003, 100: 1316-21. 10.1073/pnas.0335853100. Schmidt S, Biegel E, Müller V: The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. Biochim Biophys Acta. 2009, 1787: 691-6. 10.1016/j.bbabio.2008.12.015. Herrmann G, Jayamani E, Mai G, Buckel W: Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol. 2008, 190: 784-91. 10.1128/JB.01422-07. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK: Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol. 2008, 190: 843-50. 10.1128/JB.01417-07. Müller V, Grüber G: ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci. 2003, 60: 474-94. 10.1007/s000180300040. Serrano A, Perez-Castineira JR, Baltscheffsky M, Baltscheffsky H: H+-PPases: yesterday, today and tomorrow. IUBMB Life. 2007, 59: 76-83. 10.1080/15216540701258132. Graentzdoerffer A, Rauh D, Pich A, Andreesen JR: Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol. 2003, 179: 116-30. Dürre P, Andreesen J: Pathway of carbon dioxide reductionto acetate without a net energy requirement in Clostridium purinolyticum. FEMS Microbiol Lett. 1982, 15: 51-56. 10.1016/0378-1097(82)90011-8. Schneeberger A, Frings J, Schink B: Net synthesis of acetate from CO2 by Eubacterium acidaminophilum through the glycine reductase pathway. FEMS Microbiology Letters. 1999, 177: 1-6. 10.1111/j.1574-6968.1999.tb13705.x. Fuchs G: CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiology Reviews. 1986, 39: 181-213. 10.1111/j.1574-6968.1986.tb01859.x. Drake H, Küsel K: How the diverse physiologic potential of acetogens determine their in situ realities. Biochemistry and Physiology of Anaerobic Bacteria. Edited by: Ljungdahl L, Adams M, Barton L, Ferry J, Johnson M. 2003, New York: Springer, 171-190. full_text. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O: A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA. 2004, 101: 446-51. 10.1073/pnas.0304262101. Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH: Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 2005, 1: e65-10.1371/journal.pgen.0010065. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C: MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res. 2006, 34: 53-65. 10.1093/nar/gkj406. Bocs S, Cruveiller S, Vallenet D, Nuel G, Medigue C: AMIGene: Annotation of MIcrobial Genes. Nucleic Acids Res. 2003, 31: 3723-6. 10.1093/nar/gkg590. Brückner H, Wittner R, Godel H: Automated enantioseparation of amino acids by derivatization with o-phthaldialdehyde and n-acylated cysteines. J Chromatogr. 1989, 476: 73-82. 10.1016/S0021-9673(01)93857-9.