Efficient and stable solution-processed planar perovskite solar cells via contact passivation

American Association for the Advancement of Science (AAAS) - Tập 355 Số 6326 - Trang 722-726 - 2017
Hairen Tan1, Ankit Jain1, Oleksandr Voznyy1, Xinzheng Lan1, F. Pelayo Garcı́a de Arquer1, James Z. Fan1, Rafael Quintero‐Bermudez1, Mingjian Yuan1, Bo Zhang1, Yicheng Zhao1, Fengjia Fan1, Peicheng Li2, Li Na Quan1, Yongbiao Zhao2, Zheng‐Hong Lu2, Zhenyu Yang1, Sjoerd Hoogland1, Edward H. Sargent1
1Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
2Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada

Tóm tắt

Passivating traps in perovskites Low-temperature processing of planar organic-inorganic perovskite solar cells made through solution processing would allow for simpler manufacturing and the use of flexible substrates. However, materials currently in use form interfaces with charge carrier trap states that limit performance. Tan et al. used chlorine-capped TiO 2 colloidal nanocrystal films as an electron-selective layer, which limited interface recombination in solution-processed solar cells. Such cells achieved certified efficiencies of 19.5% for active areas of 1.1 cm 2 . Science , this issue p. 722

Từ khóa


Tài liệu tham khảo

10.1038/nnano.2015.90

10.1038/nphoton.2014.134

10.1039/C4CS00458B

10.1038/nenergy.2016.152

10.1126/science.aaa9272

10.1038/nenergy.2016.142

10.1038/nenergy.2016.81

10.1126/science.1254050

10.1039/C3EE43707H

10.1038/ncomms8410

10.1038/nphoton.2013.342

10.1038/nnano.2015.230

10.1002/admi.201600122

10.1002/adma.201600619

10.1039/C5EE02733K

10.1039/C5EE02194D

10.1038/nenergy.2016.177

10.1039/C6EE02390H

10.1126/science.aah5557

10.1126/science.aad1015

10.1126/science.1254763

10.1039/C5EE03874J

10.1126/science.aaf8060

10.1038/nenergy.2016.148

10.1021/acsenergylett.6b00254

10.1002/cssc.201601004

10.1038/ncomms13422

10.1038/nature18306

10.1038/nenergy.2015.1

10.1002/adma.201600969

10.1021/jacs.5b10614

10.1038/ncomms10379

10.1126/science.aaa5333

10.1038/ncomms8269

10.1039/C5EE00403A

10.1021/acs.nanolett.5b03556

10.1021/jz501127k

10.1063/1.4864778

10.1021/nl502612m

10.1039/C4TA05033A

10.1021/cm021203k

10.1021/jp074464w

10.1038/nmat4014

10.1126/sciadv.1501170

10.1002/aenm.201501310

10.1021/acs.chemmater.5b04107

10.1002/pip.2788

10.1002/aenm.201600396

10.1021/acs.accounts.5b00420

10.1039/C6EE01504B

10.1038/ncomms11574

10.1038/ncomms11683

10.1021/acsnano.6b02613

10.1021/acsnano.5b03687

10.1021/cm504022q

10.1103/PhysRevLett.77.3865

10.1063/1.2770708

H. Press et al . in The Art of Scientific Computing (Cambridge Univ. Press ed. 3 2007) chap. 10.9.