Aortic valve stenotic area calculation from phase contrast cardiovascular magnetic resonance: the importance of short echo time
Tóm tắt
Cardiovascular magnetic resonance (CMR) can potentially quantify aortic valve area (AVA) in aortic stenosis (AS) using a single-slice phase contrast (PC) acquisition at valve level: AVA = aortic flow/aortic velocity-time integral (VTI). However, CMR has been shown to underestimate aortic flow in turbulent high velocity jets, due to intra-voxel dephasing. This study investigated the effect of decreasing intra-voxel dephasing by reducing the echo time (TE) on AVA estimates in patients with AS. 15 patients with moderate or severe AS, were studied with three different TEs (2.8 ms/2.0 ms/1.5 ms), in the main pulmonary artery (MPA), left ventricular outflow tract (LVOT) and 0 cm/1 cm/2.5 cm above the aortic valve (AoV). PC estimates of stroke volume (SV) were compared with CMR left ventricular SV measurements and PC peak velocity, VTI and AVA were compared with Doppler echocardiography. CMR estimates of AVA obtained by direct planimetry from cine acquisitions were also compared with the echoAVA. With a TE of 2.8 ms, the mean PC SV was similar to the ventricular SV at the MPA, LVOT and AoV0 cm (by Bland-Altman analysis bias ± 1.96 SD, 1.3 ± 20.2 mL/-6.8 ± 21.9 mL/6.5 ± 50.7 mL respectively), but was significantly lower at AoV1 and AoV2.5 (-29.3 ± 31.2 mL/-21.1 ± 35.7 mL). PC peak velocity and VTI underestimated Doppler echo estimates by approximately 10% with only moderate agreement. Shortening the TE from 2.8 to 1.5 msec improved the agreement between ventricular SV and PC SV at AoV0 cm (6.5 ± 50.7 mL vs 1.5 ± 37.9 mL respectively) but did not satisfactorily improve the PC SV estimate at AoV1 cm and AoV2.5 cm. Agreement of CMR AVA with echoAVA was improved at TE 1.5 ms (0.00 ± 0.39 cm2) versus TE 2.8 (0.11 ± 0.81 cm2). The CMR method which agreed best with echoAVA was direct planimetry (-0.03 cm2 ± 0.24 cm2). Agreement of CMR AVA at the aortic valve level with echo AVA improves with a reduced TE of 1.5 ms. However, flow measurements in the aorta (AoV 1 and 2.5) are underestimated and 95% limits of agreement remain large. Further improvements or novel, more robust techniques are needed in the CMR PC technique in the assessment of AS severity in patients with moderate to severe aortic stenosis.
Tài liệu tham khảo
Cawley PJ, Maki JH, Otto CM: Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation. 2009, 119: 468-478. 10.1161/CIRCULATIONAHA.107.742486.
John AS, Dill T, Brandt RR, Rau M, Ricken W, Bachmann G, Hamm CW: Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards?. J Am Coll Cardiol. 2003, 42: 519-526. 10.1016/S0735-1097(03)00707-1.
Caruthers SD, Lin SJ, Brown P, Watkins MP, Williams TA, Lehr KA, Wickline SA: Practical Value of Cardiac Magnetic Resonance Imaging for Clinical Quantification of Aortic Valve Stenosis: Comparison With Echocardiography. Circulation. 2003, 108: 2236-2243. 10.1161/01.CIR.0000095268.47282.A1.
Yap S-C, van Geuns R-J, Meijboom FJ, Kirschbaum SW, McGhie JS, Simoons ML, Kilner PJ, Roos-Hesselink JW: A Simplified Continuity Equation Approach to the Quantification of Stenotic Bicuspid Aortic Valves using Velocity-Encoded Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance. 2007, 9: 899-906. 10.1080/10976640701693717.
O'Brien KR, Cowan BR, Jain M, Stewart RAH, Kerr AJ, Young AA: MRI phase contrast velocity and flow errors in turbulent stenotic jets. Journal of Magnetic Resonance Imaging. 2008, 28: 210-218. 10.1002/jmri.21395.
Ahn CB, Lee SY, Nalcioglu O, Cho ZH: The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys. 1987, 14: 43-48. 10.1118/1.596093.
Bernstein MA, King KF, Zhou XJ: Handbook of MRI Pulse Sequences. 2004, Elsevier Academic Press
Eichenberger AC, Jenni R, von Schulthess GK: Aortic valve pressure gradients in patients with aortic valve stenosis: quantification with velocity-encoded cine MR imaging. AJR Am J Roentgenol. 1993, 160: 971-977.
Evans AJ, Blinder RA, Herfkens RJ, Spritzer CE, Kuethe DO, Fram EK, Hedlund LW: Effects of turbulence on signal intensity in gradient echo images. Invest Radiol. 1988, 23: 512-518.
Gao JH, Gore JO: Turbulent flow effects on NMR imaging: measurement of turbulent intensity. Med Phys. 1991, 18: 1045-1051. 10.1118/1.596645.
Hamilton CA, Moran PR, Santago P, Rajala SA: Effects of intravoxel velocity distributions on the accuracy of the phase-mapping method in phase-contrast MR angiography. J Magn Reson Imaging. 1994, 4: 752-755. 10.1002/jmri.1880040520.
Kilner PJ, Firmin DN, Rees RS, Martinez J, Pennell DJ, Mohiaddin RH, Underwood SR, Longmore DB: Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology. 1991, 178: 229-235.
Kilner PJ, Manzara CC, Mohiaddin RH, Pennell DJ, Sutton MG, Firmin DN, Underwood SR, Longmore DB: Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation. 1993, 87: 1239-1248.
Nayak KS, Hu BS, Nishimura DG: Rapid quantitation of high-speed flow jets. Magn Reson Med. 2003, 50: 366-372. 10.1002/mrm.10538.
Stahlberg F, Sondergaard L, Thomsen C, Henriksen O: Quantification of complex flow using MR phase imaging--a study of parameters influencing the phase/velocity relation. Magn Reson Imaging. 1992, 10: 13-23. 10.1016/0730-725X(92)90368-A.
Tang C, Blatter DD, Parker DL: Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging. 1993, 3: 377-385. 10.1002/jmri.1880030213.
Valk PE, Hale JD, Crooks LE, Kaufman L, Roos MS, Ortendahl DA, Higgins CB: MRI of blood flow: correlation of image appearance with spin-echo phase shift and signal intensity. AJR Am J Roentgenol. 1986, 146: 931-939.
Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA, Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of E: Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. Journal of the American Society of Echocardiography. 2002, 15: 167-184. 10.1067/mje.2002.120202.
Massey BS: Mechanics of fluids. 1975, Van Nostrand Reinhold Company, 3
Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell'Italia LJ: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology. 2000, 216: 597-602.
Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A: Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging. 2005, 22: 73-79. 10.1002/jmri.20361.
Nayler GL, Firmin DN, Longmore DB: Jets associated with stenotic valvular disease. J Comput Assist Tomogr. 1986, 10: 715-722. 10.1097/00004728-198609000-00001.
Bonow RO, Carabello BA, Kanu C, de Leon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise JS, Smith SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Page RL, Riegel B: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation. 2006, 114: e84-231. 10.1161/CIRCULATIONAHA.106.176857.
Kupfahl C, Honold M, Meinhardt G, Vogelsberg H, Wagner A, Mahrholdt H, Sechtem U: Evaluation of aortic stenosis by cardiovascular magnetic resonance imaging: comparison with established routine clinical techniques. Heart. 2004, 90: 893-901. 10.1136/hrt.2003.022376.
Yoganathan AP, Cape EG, Sung HW, Williams FP, Jimoh A: Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol. 1988, 12: 1344-1353.
Gatenby JC, Gore JC: Mapping of turbulent intensity by magnetic resonance imaging. J Magn Reson B. 1994, 104: 119-126. 10.1006/jmrb.1994.1064.
Gatenby JC, McCauley TR, Gore JC: Mechanisms of signal loss in magnetic resonance imaging of stenoses. Med Phys. 1993, 20: 1049-1057. 10.1118/1.597001.
Feigenbaum H, Armstrong W, Ryan T: Feigenbaum's Echocardiography. 2004, Lea & Febiger, 6
Chernobelsky A, Shubayev O, Comeau CR, Wolff SD: Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007, 9: 681-685. 10.1080/10976640601187588.
Haghi D, Suselbeck T, Fluechter S, Kalmar G, Schroder M, Kaden JJ, Poerner T, Borggrefe M, Papavassiliu T: A hybrid approach for quantification of aortic valve stenosis using cardiac magnetic resonance imaging and echocardiography: comparison to right heart catheterization and standard echocardiography. Clin Res Cardiol. 2006, 95: 162-167. 10.1007/s00392-006-0355-1.