SARS-CoV-2 viral load is associated with increased disease severity and mortality

Nature Communications - Tập 11 Số 1
Jesse Fajnzylber1, James Regan1, Kendyll Coxen1, Heather Corry1, Colline Wong1, Alexandra Rosenthal1, Daniel Worrall2, Françoise Giguel3, Alicja Piechocka‐Trocha2, Caroline Atyeo2, Stephanie Fischinger2, Andrew T. Chan3, Keith T. Flaherty3, Kathryn Hall3, Michael Dougan3, Edward T. Ryan3, Elizabeth Gillespie1, Rida Chishti1, Yijia Li1, Nikolaus Jilg1, Dusan Hanidziar3, Rebecca M. Baron1, Lindsey R. Baden1, Athe Tsibris1, Katrina Armstrong3, Daniel R. Kuritzkes1, Galit Alter2, Bruce D. Walker2, Xu G. Yu2, Jonathan Z. Li1, Betelihem A. Abayneh, Patrick Allen3, Diane Antille3, Alejandro B. Balazs2, Julia Bals2, Max Barbash2, Yannic C. Bartsch2, Julie Boucau2, Siobhan Boyce3, Joan Braley3, Kelley R. Branch3, Katherine Broderick3, Julia Carney3, Josh Chevalier2, Manish C. Choudhary1, Navin Chowdhury2, Trevor Cordwell1, George Q. Daley4, Susan Davidson3, Michaël Desjardins1, Lauren Donahue1, David A. Drew3, Kevin Einkauf2, Sampson Elizabeth1, Ashley Elliman3, Behzad Etemad1, Jon Fallon2, Liz Fedirko2, Kelsey Finn2, Jeanne Flannery3, Pamela J. Forde3, Pilar García‐Broncano2, Elise Gettings3, David Golan4, Kirsten Goodman1, Amanda Griffin3, Sheila Grimmel3, Kathleen Grinke3, Ciputra Adijaya Hartana2, Meg Healy3, Howard M. Heller3, Deborah Henault3, Grace Holland3, Chenyang Jiang2, Hannah Jordan1, Paulina Kapłonek2, Elizabeth W. Karlson1, Marshall Karpell2, Chantal Kayitesi3, Evan C. Lam2, Vlasta LaValle3, Kristina Lefteri3, Xiaodong Lian3, Mathias Lichterfeld1, Daniel Lingwood3, Hang Liu3, Jin-Qing Liu2, K. A. J. Lopez1, Yuting Lu3, Sarah Luthern3, Ngoc L. Ly3, Maureen MacGowan1, Karen Magispoc1, Jordan Marchewka3, Brittani Martino3, Roseann McNamara3, Ashlin R. Michell3, Ilan Millstrom3, Noah Miranda3, Christian Nambu3, Susan C. Nelson3, Marjorie Noone3, Lewis A. Novack1, Claire O’Callaghan3, Christine Ommerborn3, Matthew R. Osborn2, Lois Chris Pacheco3, Nicole Phan3, Shiv Pillai3, Falisha A. Porto3, Yelizaveta Rassadkina3, Alexandra Reissis3, Francis F. Ruzicka3, Kyra Seiger2, Kathleen Selleck3, Libera Sessa3, Arlene Sharpe4, Christianne Sharr2, Sally Shin3, Nishant K. Singh3, Sue Slaughenhaupt3, Kimberly Smith Sheppard3, Weiwei Sun3, Xiaoming Sun3, Elizabeth Suschana1, Opeyemi Talabi1, Hannah Ticheli3, Scott T. Weiss1, Vivine Wilson3, Alex Zhu3
1Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
2Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
3Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
4Harvard Medical School, Boston, MA, USA

Tóm tắt

AbstractThe relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.

Từ khóa


Tài liệu tham khảo

Cheng, V. C. et al. Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 38, 467–475 (2004).

Hung, I. F. et al. Viral loads in clinical specimens and SARS manifestations. Emerg. Infect. Dis. 10, 1550–1557 (2004).

To, K. K. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30196-1 (2020).

Xu, K. et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa351 (2020).

He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. https://doi.org/10.1038/s41591-020-0869-5 (2020).

Wu, J. T. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020).

Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2002032 (2020).

Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science https://doi.org/10.1126/science.abb3221 (2020).

Oxley, T. J. et al. Large-vessel stroke as a presenting feature of covid-19 in the young. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2009787 (2020).

Menter, T. et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology https://doi.org/10.1111/his.14134 (2020).

Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2015432 (2020).

Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet, https://doi.org/10.1016/S0140-6736(20)30937-5 (2020).

Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe, https://doi.org/10.1016/j.chom.2020.04.009 (2020).

Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa449 (2020).

Wang, W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, https://doi.org/10.1001/jama.2020.3786 (2020).

Wolfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature, https://doi.org/10.1038/s41586-020-2196-x (2020).

Mellors, J. W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170 (1996).

Saag, M. S. et al. HIV viral load markers in clinical practice. Nat. Med 2, 625–629 (1996).

Towner, J. S. et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J. Virol. 78, 4330–4341 (2004).

Vos, L. M. et al. Lower respiratory tract infection in the community: associations between viral aetiology and illness course. Clin. Microbiol. Infect., https://doi.org/10.1016/j.cmi.2020.03.023 (2020).

Li, C. C. et al. Correlation of pandemic (H1N1) 2009 viral load with disease severity and prolonged viral shedding in children. Emerg. Infect. Dis. 16, 1265–1272 (2010).

Lee, N. et al. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J. Infect. Dis. 200, 492–500 (2009).

Grant, P. R. et al. Detection of SARS coronavirus in plasma by real-time RT-PCR. N. Engl. J. Med. 349, 2468–2469 (2003).

Wang, W. K. et al. Detection of severe acute respiratory syndrome coronavirus RNA in plasma during the course of infection. J. Clin. Microbiol. 43, 962–965 (2005).

Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 e1039 (2020).

Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

Chen, L., Li, X., Chen, M., Feng, Y. & Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 116, 1097–1100 (2020).

Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2011400 (2020).

Spiezia, L. et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb. Haemost. https://doi.org/10.1055/s-0040-1710018 (2020).

Ranucci, M. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. https://doi.org/10.1111/jth.14854 (2020).

Bikdeli, B. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2020.04.031 (2020).

Zhang, Y. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 382, e38 (2020).

Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 - preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2007764 (2020).

Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

Boudreault, F. et al. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2, https://doi.org/10.1172/jci.insight.86507 (2017).

Centers for Disease Control and Prevention (CDC). Accessed April 2020.

Palmer, S. et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41, 4531–4536 (2003).