Dry-sliding Tribological Properties of Nano-Eutectic Fe83B17 Alloy

Tribology Letters - Tập 34 - Trang 185-191 - 2009
Licai Fu1,2, Jun Yang1, Qinling Bi1, Shengyu Zhu1,2, Weimin Liu1
1State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
2Graduate University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Tóm tắt

This paper reports the tribological performance of the nano-eutectic Fe83B17 alloy under dry sliding against Si3N4 ceramic ball in ambient environment with varying applied loads and sliding speeds. Worn surfaces of the nano-eutectic Fe83B17 alloy were examined with a scanning electron microscope (SEM) and an X-ray energy dispersive spectroscope (EDS). The wear debris of the samples were also analyzed by X-ray diffractometer (XRD). The wear rate of the nano-eutectic Fe83B17 alloy was of the magnitude of 10−4 mm3/m, which was lower than that of the coarse grained Fe83B17 alloy. The friction coefficient of the nano-eutectic Fe83B17 alloy was almost the same as that of the coarse grained Fe83B17 alloy. The Fe2SiO4 oxide layer was formed on the worn surface of the nano-eutectic Fe83B17 alloy. However, on the worn surface of the coarse grained Fe83B17 alloy was found only a little Fe2SiO4. These results demonstrated that the nanostructure improved the wear resistance of the Fe83B17 alloy, but did not significantly affect the friction coefficient. The wear mechanism of the nano-eutectic Fe83B17 alloy was delamination abrasion mainly.

Tài liệu tham khảo

Trelewicz, J.R., Schuh, C.A.: The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 45, 5948–5958 (2007). doi:10.1016/j.actamat.2007.07.020 Kumar, K.S., V-Swygenhoven, H., Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003). doi:10.1016/j.actamat.2003.08.032 Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006). doi:10.1016/j.pmatsci.2005.08.003 Mishra, R., Basu, B., Balasubramaniam, R.: Effect of grain size on the tribological behavior of nanocrystalline nickel. Mater. Sci. Eng. A 373, 370–373 (2004). doi:10.1016/j.msea.2003.09.107 Wang, Z.B., Tao, N.R., Li Wang, S., Liu, G., Lu, J., Lu, K.: Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A 352, 144–149 (2003). doi:10.1016/S0921-5093(02)00870-5 Lin, Y., Lu, J., Wang, L., Xu, T., Xue, Q.: Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 54, 5599–5605 (2006). doi:10.1016/j.actamat.2006.08.014 Zhang, Y.S., Wang, K., Han, Z., Liu, G.: Dry sliding wear behavior of copper with nano-scaled twins. Wear 262, 1463–1470 (2007). doi:10.1016/j.wear.2007.01.012 Yang, J., Ma, J.Q., Bi, Q.L., Liu, W.M., Xue, Q.J.: Tribological properties of Fe3Al material under water environment. Mater. Sci. Eng. A 490, 90–94 (2008). doi:10.1016/j.msea.2008.01.024 Passamani, E.C., Tagarro, J.R.B.: Thermal studies and magnetic properties of mechanical alloyed Fe2B. J. Phys. D Condens. Matter 14, 1975–1983 (2002). doi:10.1088/0953-8984/14/8/325 Lovas, A., Varga, L.K., Koszo, E.K., Kovac, J.: Inhomogeneities and basic magnetic properties in Fe-B glassy alloys. IEEE Trans. Magn. 30, 467–469 (1994). doi:10.1109/20.312305 Fdez, M.L., Garcia, A., Barandiaran, J.M., Lopez, R., Orue, I., Gorria, P., Pizzini, S., Fontaine, A.: Local structure and ferromagnetic character of Fe-B and Fe-P amorphous alloys. Phys. Rev. B 62, 5746–5750 (2000). doi:10.1103/PhysRevB.62.5746 Palumbo, M., Cacciamani, G., Bosco, E., Baricco, M.: Driving forces for crystal nucleation in Fe-B liquid and amorphous alloys. Intermetallics 11, 1293–1299 (2003). doi:10.1016/S0966-9795(03)00171-7 Iakovou, R., Bourithis, L., Papadimitriou, G.: Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252, 1007–1015 (2002). doi:10.1016/S0043-1648(02)00056-X Galvanetto, E., Borgioli, F., Bacci, T., Pradelli, G.: Wear behaviour of iron boride coatings produced by VPS technique on carbon steels. Wear 260, 825–831 (2006). doi:10.1016/j.wear.2005.04.005 Yu, L.G., Chen, X.J., Khor, K.A., Sundararajan, G.: FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater. 53, 2361 (2005). doi:10.1016/j.actamat.2005.01.043 Sen, S., Ozbek, I., Sen, U., Bindal, C.: Mechanical behavior of borides formed on borided cold work tool steel. Surf. Coat. Tech. 135, 173–177 (2001). doi:10.1016/S0257-8972(00)01064-1 Pertek, A., Kulka, M.: Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl. Surf. Sci. 205, 137–142 (2003). doi:10.1016/S0169-4332(02)01012-7 Moore, J.J., Feng, H.J.: Combustion synthesis of advanced materials: part I. Reaction parameters. Prog. Mater. Sci. 39, 243–273 (1995). doi:10.1016/0079-6425(94)00011-5 La, P.Q., Yang, J., Cockayne, D.J.H., Liu, W.M., Xue, Q.J., Li, Y.D.: Bulk nanocrystalline Fe3Al-based material prepared by aluminothermic reaction. Adv. Mater. 18, 733–736 (2006). doi:10.1002/adma.200501684 Fu, L.C., Yang, J., Bi, Q.l., Li, L.J., Liu, W.M.: Microstructure and mechanical behavior of nano-eutectic Fe83B17 alloy prepared by a self-propagating high temperature synthesis combining rapid solidification. J. Phys. D Appl. Phys. 41, 235401–235405 (2008). doi:10.1088/0022-3727/41/23/235401 Jahanmir, S.: Friction and Wear of Ceramics. Marcel Dekker, New York (1990) La, P.Q., Ma, J.Q., Zhu, Y.T., Yang, J., Liu, W.M., Xue, Q.J., Valiev, R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167–5173 (2005). doi:10.1016/j.actamat.2005.07.031 Yang, J., Bi, Q.L., Liu, W.M., Xue, Q.J.: Tribological properties of FeAl intermetallics under dry sliding. Wear 257, 104–109 (2004). doi:10.1016/j.wear.2003.10.012