Profile of melatonin and its receptors and synthesizing enzymes in cumulus–oocyte complexes of the developing sheep antral follicle—a potential estradiol-mediated mechanism
Tóm tắt
Melatonin is an amine hormone that plays an important role in regulating mammalian reproduction. This study aimed to investigate the expression pattern of melatonin synthesis enzymes AANAT and HIOMT and melatonin receptors MT1 and MT2 in sheep cumulus–oocyte complexes (COCs) as well as the change of melatonin level in follicular fluid (FF) during antral follicle development. In this research, we also study the effect of β-estradiol (E2) on MT1 and MT2 expression as well as melatonin synthesis in COCs so as to lay the foundation for further exploration of the regulation mechanism of melatonin synthesis in the ovary. COCs and FF were collected from different size (large follicles (diameter ≥ 5 mm), medium follicles (diameter 2–5 mm), and small follicles (diameter ≤ 2 mm)) of antral follicles in sheep ovaries. To assess whether E2 regulates melatonin synthase and its receptors expression in sheep COCs and whether it is mediated through estrogen receptor (ER) pathway. The collected COCs were cultured in vitro for 24 h and then treat with 1 μM E2 and/or 1 μM ICI182780 (non-selective ER antagonist). The expression of AANAT, HIOMT, MT1 and MT2 mRNA and protein were determined by qRT-PCR and western blot. The melatonin level was determined by ELISA. The expression of AANAT, HIOMT, MT1 and MT2 were significantly higher expression in the COCs of small follicles than in those of large follicles (P < 0.05). However, the melatonin level was significantly higher in large follicle FF than in small follicle FF (P < 0.05). Further, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production were decreased by E2 treatment (P < 0.05), but when ICI182780 was added, the expression of AANAT, HIOMT, MT1, and MT2 and melatonin production recovered (P < 0.05). We suggest that sheep COCs can synthesize melatonin, but this ability is decreased with increasing follicle diameter. Furthermore, E2 play an important role in regulated the expression of MT1 and MT2 as well as melatonin synthesis in sheep COCs through the ER pathway.
Tài liệu tham khảo
Namboodiri MAA, Dubbels R, Klein DC. [67] Arylalkylamine N -acetyltransferase from mammalian pineal gland. Method Enzymol. 1987;142:583–90.
Sugden D, Ceña V, Klein DC. Hydroxyindole O-methyltransferase. Method Enzymol. 1987;142:590–6.
Ganguly S, Coon SL, Klein DC. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 2002;309:127–37.
Okatani Y, Hayashi K, Watanabe K, Morioka N, Sagara Y. Estrogen modulates the nocturnal synthesis of melatonin in peripubertal female rats. J Pineal Res. 2010;24:224–9.
Mennenga K, Ueck M, Reiter RJ. Immunohistological localization of melatonin in the pineal gland and retina of the rat. J Pineal Res. 2010;10:159–64.
Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Digest Dis Sci. 2002;47:2336–48.
Sanchez-Hidalgo M, de la Lastra CA, Carrascosa-Salmoral MP, Naranjo MC, Gomez-Corvera A, Caballero B, Guerrero JM. Age-related changes in melatonin synthesis in rat extrapineal tissues. Exp Gerontol. 2009;44:328–34.
Tijmes M, Pedraza R, Valladares L. Melatonin in the rat testis: evidence for local synthesis. Steroids. 1996;61:65–8.
Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocr Meta. 1987;64:865–7.
Bódis J, Hartmann G, Tinneberg H-R, Török A, Hanf V, Papenfuss F, Schwarz H. Relationship between the monoamine, progesterone and estradiol content in follicular fluid of preovulatory graafian follicles after superovulation treatment. Gynecol Obstet Inves. 1993;35:232–5.
Itoh MT, Ishizuka B, Kudo Y, Fusama S, Amemiya A, Sumi Y. Detection of melatonin and serotonin N -acetyltransferase and hydroxyindole- O -methyltransferase activities in rat ovary. Mol Cell Endocrinol. 1997;136:7–13.
Itoh MT, Ishizuka B, Kuribayashi Y, Amemiya A, Sumi Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol Hum Reprod. 1999;5:402–8.
El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, Sosa GA, El-Roos ME, Nagai T. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev. 2011;78:250–62.
Amireault P, Dubé F. Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol Reprod. 2005;73:358–65.
Sakaguchi K, Itoh MT, Takahashi N, Tarumi W, Ishizuka B. The rat oocyte synthesises melatonin. Reprod Fertil Dev. 2013;25:674–82.
Kim MK, Park EA, Kim HJ, Choi WY, Cho JH, Lee WS, Cha KY, Kim YS, Lee DR, Yoon TK. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS? Reprod BioMed Online. 2013;26:22–9.
Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2010;34:75–8.
Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48:798–806.
Fortune JE, Rivera GM, Evans ACO, Turzillo AM. Differentiation of dominant versus subordinate follicles in Cattle1. Biol Reprod. 2001;65:648–54.
Harris SE, Picton H. Metabolism of follicles and oocytes during growth and maturation. In: Tan SL, Chian RC, Buckett W, editors. In-vitro Maturation of Human Oocytes. Oxon: Informa Healthcare; 2007. p. 15–36.
Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2011;86(2):27.
Dair EL, Simoes RS, Simões MJ, Romeu LR, Oliveira-Filho RM, Haidar MA, Baracat EC, Jr SJ. Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil Steril. 2008;89:1299–305.
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res. 2013;54:245–57.
Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1–16.
Cunha MCRVD, Mesquita LG, Neto PF, Bressan F, Oliveira AS, Castro FC, Schwarz KRL, Watanabe OY, Watanabe YF, Leal CLV. Influence of melatonin on in vitro maturation of bovine oocytes. Reprod Fertil Dev. 2014;233.
Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother. 2006;60:97–108.
Jr SJ, Masana MI, Erşahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306:694–702.
Taketani T, Tamura H, Takasaki A, Lee L, Kizuka F, Tamura I, Taniguchi K, Maekawa R, Asada H, Shimamura K. Protective role of melatonin in progesterone production by human luteal cells. J Pineal Res. 2011;51:207–13.
Maganhin CC, Fuchs LF, Simões RS, Oliveira-Filho RM, De JSM, Baracat EC, Jr SJ. Effects of melatonin on ovarian follicles. Eur J Obstet Gynecol Reprod Biol. 2013;166:178–84.
Berlinguer F, Leoni GG, Succu S, Spezzigu A, Madeddu M, Satta V, Bebbere D, Contrerassolis I, Gonzalezbulnes A, Naitana S. Exogenous melatonin positively influences follicular dynamics, oocyte developmental competence and blastocyst output in a goat model. J Pineal Res. 2010;46:383–91.
Karakaş A, Kaya A, Gündüz B. The effect of pinealectomy, melatonin and leptin hormones on ovarian follicular development in female Syrian hamsters (Mesocricetus auratus). Acta Biol Hung. 2010;61:380–90.
Rocha RM, Lima LF, Alves AM, Celestino JJ, Matos MH, Lima-Verde IB, Bernuci MP, Lopes CA, Báo SN, Campello CC. Interaction between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles. Domest Anim Endocrinol. 2013;44:1–9.
Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ, Xu J, Ji P, Liu G. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res. 2014;57:239–47.
Tian XZ, Wang F, Zhang L, He CJ, Ji PY, Wang J, Zhang ZZ, Lv DY, Abulizi W, Wang XG, Lian ZX, Liu GS. Beneficial effects of melatonin on the in vitro maturation of sheep oocytes and its relation to melatonin receptors. Int J Mol Sci. 2017;18:834–48.
Lee S, Jin JX, Taweechaipaisakul A, Kim GA, Ahn C, Lee BC. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes. J Pineal Res. 2017;63(3).
Lee S, Jin JX, Taweechaipaisakul A, Kim GA, Lee BC. Stimulatory effects of melatonin on porcine in vitro maturation are mediated by MT2 receptor. Int J Mol Sci. 2018;19:1581–92.
Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX. Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci. 2013;14:7231–72.
He C, Ma T, Shi J, Zhang Z, Wang J, Zhu K, Li Y, Yang M, Song Y, Liu G. Melatonin and its receptor MT1 are involved in the downstream reaction to luteinizing hormone and participate in the regulation of luteinization in different species. J Pineal Res. 2016;61(3):279–90.
Jun-Jie HU, Zhang Y, Wang JY, Zhao XX, Zhang HR. Cloning, sequencing and analysis of melatonin receptor subtype MT1 in ypothalamus-pituitary-gonadal Axis and pineal of female Bactrian camel. J Anim Vet Adv. 2012;11:470–4.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.
Song LL, Cui Y, Yu SJ, Liu PG, Liu J, Yang X, He JF, Zhang Q. Expression characteristics of BMP2, BMPR-IA and noggin in different stages of hair follicle in yak skin. Gen Comp Endocr. 2018;260:18–24.
Tian X, Wang F, Zhang L, He C, Ji P, Wang J, Zhang Z, Lv D, Abulizi W, Wang X, Lian Z, Liu G. Beneficial effects of melatonin on the in vitro maturation of sheep oocytes and its relation to melatonin receptors. Int J Mol Sci. 2017;18:834–49.
Hu JJ, Zhang XY, Zhang Y, Zhao XX, Li FD, Tao JZ. Molecular characterization and expression profile of the melatonin receptor MT1 in the ovary of Tianzhu white yak (Bos grunniens). Gen Comp Endocr. 2017;242:101–7.
Wurtman RJ, Axelrod J, Potter LT. The uptake of H3-melatonin in endocrine and nervous tissues and the effects of constant light exposure. J Pharmacol ExpTher. 1964;143:314–8.
Miyamoto Y, Akaike T, Yoshida M, Goto S, Horie H, Maeda H. Potentiation of nitric oxide—mediated Vasorelaxation by xanthine oxidase inhibitors. Proc Soc Exp Biol Med. 1996;211(4):366–73.
Geva E, Jaffe RB. Role of vascular endothelial growth factor in ovarian physiology and pathology. Proc Soc Exp Biol Med. 2000;74:429–38.
Clemens JW, Jarzynka MJ, Witt-Enderby PA. Down-regulation of mt 1 melatonin receptors in rat ovary following estrogen exposure. Life Sci. 2001;69:27–35.
Webb R, Garnsworthy PC, Gong JG, Armstrong DG. Control of follicular growth: local interactions and nutritional influences. J Anim Sci. 2004;82:E63–74.
Richards JS. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev. 1980;60:51–89.
Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim Reprod Sci. 2004;82:109–26.
Tetsuka M, Nancarrow CD. The levels of 5alpha-dihydrotestosterone in follicular fluid in healthy and atretic ovine follicles. Domest Anim Endocrin. 2007;33(3):347–57.
Treeck O, Haldar C, Ortmann O. Antiestrogens modulate MT1 melatonin receptor expression in breast and ovarian cancer cell lines. Oncol Rep. 2006;15:231–5.
Chuffa LGA, Seiva FR, Fávaro WJ, Teixeira GR, Amorim JP, Mendes LO, Fioruci BA, Pinheiro PFF, Fernandes AAH, Franci JA. Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex steroid receptors in reproductive tissues during rat ovulation. Reprod Biol Endocrinol. 2011;9:108–14.
Cos S, González A, Martínezcampa C, Mediavilla MD, Alonsogonzález C, Sánchezbarceló EJ. Melatonin as a selective estrogen enzyme modulator. Curr Cancer Drug Tar. 2008;8:691–702.
Cos S, González A, Martínezcampa C, Mediavilla MD, Alonsogonzález C, Sánchezbarceló EJ. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detec Prev. 2006;30:118–28.
Molis TM, Spriggs LL, Hill SM. Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol. 1994;8:1681–90.
Hill SM, Spriggs LL, Simon MA, Muraoka H, Blask DE. The growth inhibitory action of melatonin on human breast cancer cells is linked to the estrogen response system. Cancer Lett. 1992;64:249–56.
Yang SD, Lei M, Gu TX, Ding WY, Feng Z, Yong S, Zhang YZ, Yang DL, Di Z, Sun YP. 17β-estradiol protects against apoptosis induced by levofloxacin in rat nucleus pulposus cells by upregulating integrin α 2 β 1. Apoptpsis. 2014;19:789–800.
Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–95.
Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87:905.
Tomanek M, Pisselet C, Monget P, Madigou T, Thieuland ML, Monniaux D. Estrogen receptor protein and mRNA expression in the ovary of sheep. Mol Reprod Dev. 1997;48:53–62.
Cárdenas H, Burke KA, Bigsby RM, et al. Estrogen receptor beta in the sheep ovary during the estrous cycle and early pregnancy. Biol Reprod. 2001;65(1):128–34.