CPT1a gene expression reverses the inflammatory and anti-phagocytic effect of 7-ketocholesterol in RAW264.7 macrophages

Lipids in Health and Disease - Tập 18 - Trang 1-10 - 2019
Priscila Calle1, Angeles Muñoz1, Anna Sola2,3, Georgina Hotter1,3
1Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), Barcelona, Spain
2Department of Experimental Nephrology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
3Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina. (CIBER-BBN), Barcelona, Spain

Tóm tắt

Macrophage are specialized cells that contributes to the removal of detrimental contents via phagocytosis. Lipid accumulation in macrophages, whether from phagocytosis of dying cells or from circulating oxidized low-density lipoproteins, alters macrophage biology and functionality. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. However, the potential of CPT1a to activate macrophage phagocytic function have not been elucidated. Using a murine macrophage cell line, RAW264.7, we determine if intracellular accumulation of 7-ketocholesterol (7-KC) modulates macrophage phagocytic function through CPT1a gene expression. In addition, the effects of CPT1a genetic modification on macrophage phenotype and phagocytosis has been studied. Our results revealed that CPT1a gene expression decreased by the accumulation of 7-KC at the higher dose of 7-KC. This was concomitant with an impair ability to phagocytize bioparticles and an inflammatory phenotype. GW3965 treatment, which have shown to facilitate the efflux of cholesterol, eliminated the intracellular lipid droplets of 7-KC-laden macrophages, increased the gene expression of CPT1a, diminished the gene expression of the inflammatory marker iNOS and restored macrophage phagocytosis. Furthermore, CPT1a Knockdown per se was detrimental for macrophage phagocytosis whereas transcriptional activation of CPT1a heightened the uptake of bioparticles. Altogether, our findings indicate that downregulation of CPT1a by lipid content modulates macrophage phagocytosis and inflammatory phenotype.

Tài liệu tham khảo

Schrijvers DM, De Meyer GRY, Herman AG, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res. 2007;73:470–80. https://doi.org/10.1016/j.cardiores.2006.09.005. Krysko DV, D’Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis. 2006;11:1709–26. https://doi.org/10.1007/s10495-006-9527-8. Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol. 2018;330:27–42. https://doi.org/10.1016/j.cellimm.2018.01.020. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67. https://doi.org/10.1161/CIRCRESAHA.115.306256. Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15:846–55. https://doi.org/10.1038/ni.2956. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med. 2017;95:1153–65. https://doi.org/10.1007/s00109-017-1575-8. Tang Y, Zhou J, Hooi SC, Jiang Y-M, Lu G-D. Fatty acid activation in carcinogenesis and cancer development: essential roles of long-chain acyl-CoA synthetases. Oncol Lett. 2018;16:1390–6. https://doi.org/10.3892/ol.2018.8843. Szeto HH. Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J Am Soc Nephrol. 2017;28:2856–65. https://doi.org/10.1681/asn.2017030247. Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, et al. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am J Physiol Endocrinol Metab. 2015;308:E756–69. https://doi.org/10.1152/ajpendo.00362.2014. Gibson MS, Domingues N, Vieira OV. Lipid and non-lipid factors affecting macrophage dysfunction and inflammation in atherosclerosis. Front Physiol. 2018;9:654. https://doi.org/10.3389/fphys.2018.00654. Testa G, Rossin D, Poli G, Biasi F, Leonarduzzi G. Implication of oxysterols in chronic inflammatory human diseases. Biochimie. 2018;153:220–31. https://doi.org/10.1016/j.biochi.2018.06.006. Hayden JM, Brachova L, Higgins K, Obermiller L, Sevanian A, Khandrika S, Reaven P. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J Lipid Res. 2002;43:26–35. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40:274–88. https://doi.org/10.1016/j.immuni.2014.01.006. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res. 2016;119:414–7. https://doi.org/10.1161/CIRCRESAHA.116.309194. Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://doi.org/10.1016/j.redox.2012.12.001. Sallam T, Jones M, Thomas BJ, Wu X, Gilliland T, Qian K, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med. 2018;24:304–12. https://doi.org/10.1038/nm.4479. Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci. 2007;104:15093–8. https://doi.org/10.1073/pnas.0704602104. Hong C, Walczak R, Dhamko H, Bradley MN, Marathe C, Boyadjian R, et al. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. J Lipid Res. 2011;52:531–9. https://doi.org/10.1194/jlr.m010686. Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem. 2012;287:11629–41. https://doi.org/10.1074/jbc.M111.338673. Ménégaut L, Thomas C, Lagrost L, Masson D. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr Opin Lipidol. 2017;28:19–26. https://doi.org/10.1097/MOL.0000000000000370. Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol. 2016;17:216–7. https://doi.org/10.1038/ni.3366. Diskin C, Pålsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270. https://doi.org/10.3389/fimmu.2018.00270. Kaseda R, Tsuchida Y, Yang HC, Yancey PG, Zhong J, Tao H, et al. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: Effects of liver X receptor agonism. BMC Nephrol. 2018;19:17. https://doi.org/10.1186/s12882-018-0814-8. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7:e2226. https://doi.org/10.1038/CDDIS.2016.132. Bentebibel A, Sebastián D, Herrero L, López-Viñas E, Serra D, Asins G, et al. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Biochemistry. 2006;45:4339–50. https://doi.org/10.1021/bi052186q. Mera P, Bentebibel A, López-Viñas E, Cordente AG, Gurunathan C, Sebastián D, et al. C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem Pharmacol. 2009;77:1084–95. https://doi.org/10.1016/j.bcp.2008.11.020. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. https://doi.org/10.1038/nature08938. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil M-T, Su M, Sen P, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359:684–8. https://doi.org/10.1126/science.aan4183. Moon J-S, Nakahira K, Chung K-P, DeNicola GM, Koo MJ, Pabón MA, et al. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med. 2016;22:1002–12. https://doi.org/10.1038/nm.4153.