Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance

Nature Communications - Tập 4 Số 1
Liqiang Mai1, Aamir Minhas‐Khan2, Xiaocong Tian2, Kalele Mulonda Hercule2, Yunlong Zhao2, Lin Xu3,2, Xu Xu2
1State Key Laboratory of Advanced Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan 430070, China.
2State Key Laboratory of Advanced Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology, Wuhan, China
3Department of chemistry and chemical biology, Harvard University, Cambridge, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

Huang, J., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitor. Angew. Chem. Int. Ed. 47, 520–524 (2008).

Qu, D. studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002).

Li, W. et al. A Self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1, 382–386 (2011).

Hsieh, C. T. & Teng, H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40, 667–674 (2002).

Li, W. et al. Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon 45, 1757–1763 (2007).

Wong, C. H. A., Ambrosi, A. & Pumera, M. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale 4, 4972–4977 (2012).

Chen, P. & McCreery, R. L. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem. 68, 3958–3965 (1996).

Pinero, E. R., Leroux, F. & Beguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 1877–1882 (2006).

Cheng, P. Z. & Teng, H. Electrochemical responses from surface oxide present on HNO3-treated carbon. Carbon 41, 2057–2063 (2003).

Hu, C. C. & Wang, C. C. Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors. J. Power Sources 125, 299–308 (2004).

Roldan, S. et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011).

Senthilkumar, S. T., Selvan, R. K., Ponpandian, N. & Melo, J. S. Redox additive aqueous gel electrolyte for an electric double layer capacitor. RSC Adv. 2, 8937–8940 (2012).

Senthilkumar, S. T. et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. Mater. Chem. A 1, 1086–1095 (2013).

Popa, D. E. et al. Carbon paste electrode modified with organofunctionalized mesoporous silica for electrochemical detection and determination of copper(II) using cyclic voltammetry and anodic stripping voltammetry. Rev. Roum. Chim. 55, 123–130 (2010).

Castro, C. E., Gaughan, E. J. & Owsley, D. C. Cupric halide halogenations. J. Org. Chem. 30, 587–592 (1965).

Kodomari, M., Satoh, H. & Yoshitomi, S. Selective nuclear halogenation of polymethylbenzenes with alumina-supported copper(II) halides. Bull Chem. Soc. Jpn 61, 4149–4150 (1988).

Attanasi, O., Bonifazi, P., Foresti, E. & Pradella, G. Effect of metal ions in organic synthesis. part 10. synthesis and X-ray crystal structure of some 1-(Arylamino)pyrrole derivatives by reaction of (Arylazo)alkenes and P-dicarbonyl compounds in the presence of copper(II) chloride. J. Org. Chem. 47, 684–687 (1982).

Kochi, J. K. The reduction of cupric chloride by carbonyl compound. J. Am. Chem. Soc. 77, 5274–5278 (1955).

Suleiman, I. A. et al. Interaction of chlorine and oxygen with the Cu(100) surface. J. Phys. Chem. C 114, 19048–19054 (2010).

Skrabalak, S. E. & Suslick, K. S. Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 128, 12642–12643 (2006).

Kim, H. et al. Carbon microspheres as supercapacitors. J. Phys. Chem. C. 115, 20481–20486 (2011).

Pin, E. R., Cadek, M. & Beguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19, 1032–1039 (2009).

Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

Senthilkumar, S. T., Selvan, R. K., Lee, Y. S. & Melo, J. S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 1, 1086–1095 (2013).

Li, Q. et al. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 611, 43–50 (2007).

Taberna, P. L., Simon, P. & Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003).

Chen, G. Z. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Nat. Sci. Mat. Int. 23, 245–255 (2013).

Kim, J. Y. & Chung, I. J. An All-solid-state electrochemical supercapacitor based on Poly3-(4-fluorophenylthiophene) composite electrodes. Electrochem. Soc. 149, A1376–A1380 (2002).

Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications Plenum Press (1999).

Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties Wiley (1988).

Frackowiak, E. & Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001).

Kim, Y. T. et al. Drastic change of electric double layer capacitance by surface functionalization of carbon nanotubes. Appl. Phys. Lett. 87, 234106-1–234106-3 (2005).

Kear, G., Barker, B. D. & Walsh, F. C. Electrochemical corrosion of unalloyed copper in chloride media––a critical review. Corros. Sci. 46, 109–135 (2004).

Pirogov, B. Y. & Zelinsky, A. G. Numeric simulation of electrode process in Cu/CuSO4 + H2SO4 system. Electrochim. Acta. 49, 3283–3292 (2004).

Tantavichet, N. & Pritzker, M. D. Low and high frequency pulse current plating of copper onto a rotating disk electrode. J. Electrochem. Soc. 149, C289–C299 (2002).

Rakhi, R. B., Chen, W., Cha, D. & Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012).

Ates, M. Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog. Org. Coat. 71, 1–10 (2011).

Zimmerman, A. H. & Effa, P. K. Discharge kinetics of nickel electrode. J. Electrochem. Soc. 131, 709–713 (1984).

Armstrong, R. D. & Wang, H. Behaviour of nickel hydroxide electrodes after prolonged potential float. Electrochim. Acta. 36, 759–762 (1991).

Susanti, D., Tsai, D. S., Huang, Y. S. & Korotcov, A. Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in Hydrous RuO2 . J. Phys. Chem. C 111, 9530–9537 (2007).

Roldan, S., Granda, M., Menendez, R., Santamaria, R. & Blanco, C. Mechanism of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 115, 17606–17611 (2011).

Roldan, S. et al. Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochemica. Acta. 56, 3401–3405 (2011).

Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

Roldan, S., Blanco, R., Granda, C., Menendez, M. & Santamaria, R. Toward a further generation of high energy carbon-based capacitors by using redox-active electrolyes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011).

Khomenko, V., Raymundo-Pinero, E. & Benguin, F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources 195, 4234–4241 (2010).

Kim, J. Y. & Chung, I. J. An All-solid-state electrochemical supercapacitor based on Poly3-(4-fluorophenylthiophene) composite electrodes. J. Electrochem. Soc. 149, A1376–A1380 (2002).

Ng, K. C., Zhang, S., Peng, C. & Chen, G. Z. Individual and bipolarly stacked asymmetric aqueous supercapacitors of CNTs/SnO2 and CNTs/MnO2 Nanocomposites. J. Electrochem. Soc. 156, A846–A853 (2009).