Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đột biến EIF2AK4 như là “phát sinh thứ hai” trong tăng huyết áp động mạch phổi di truyền
Tóm tắt
Đột biến trong gen kinase 4 yếu tố khởi đầu dịch mã eukaryote 2α (EIF2AK4) gần đây đã được xác định trong bệnh tắc tĩnh mạch di truyền với tính trạng lặn. Trong nghiên cứu này, chúng tôi đã đánh giá xem các đột biến EIF2AK4 có xảy ra trong một gia đình có tăng huyết áp động mạch phổi di truyền theo kiểu trội tự nhiên (HPAH) và tính thấm không hoàn toàn của các đột biến trong gen thụ thể protein hình thành xương 2 (BMPR2) không. Các kiểm tra lâm sàng trong một gia đình có 10 thành viên bao gồm khám lâm sàng, điện tâm đồ, siêu âm tim (khi chịu áp lực) và chức năng phổi. Tăng huyết áp động mạch phổi rõ ràng đã được xác nhận qua thông tim bên phải ở ba cá thể bị ảnh hưởng. Phân tích di truyền được thực hiện bằng cách sử dụng một phân tích gene cụ thể cho HPAH với công nghệ giải trình tự thế hệ tiếp theo của tất cả các gene HPAH đã biết và các gene ứng cử viên khác. Các biến thể được xác định đã được xác nhận bằng cách giải trình tự Sanger. Tất cả các thành viên sống trong gia đình có HPAH rõ ràng đều mang hai đột biến dị hợp tử gây hại: một đột biến làm lệch khung trong gen BMPR2 và một đột biến tại vị trí cắt mới trong gen EIF2AK4. Hai thành viên trong gia đình chỉ mang biến thể BMPR2 đã không phát triển HPAH rõ ràng. Đây là nghiên cứu đầu tiên gợi ý rằng EIF2AK4 cũng có thể đóng góp vào HPAH di truyền theo kiểu trội tự nhiên. Cho đến nay, nó chỉ được xác định trong một hình thức lặn của HPAH. Chỉ những thành viên trong gia đình có sự xuất hiện đồng thời của hai đột biến mới phát triển HPAH rõ ràng. Do đó, các đột biến EIF2AK4 và BMPR2 ủng hộ giả thuyết “va chạm thứ hai” giải thích về sự thấm biến thiên của HPAH trong gia đình này. Do đó, việc đánh giá tất cả các gene HPAH đã biết trong các gia đình có đột biến đã biết có thể giúp dự đoán về sự hiện diện lâm sàng trong những người mang đột biến chưa bị ảnh hưởng.
Từ khóa
#tăng huyết áp động mạch phổi #đột biến gen #EIF2AK4 #BMPR2 #thấm biến thiênTài liệu tham khảo
Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67:737–44.
Grünig E, Janssen B, Mereles D, Barth U, Borst MM, Vogt IR, et al. Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation. 2000;102:1145–50.
Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips 3rd JA, Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000;26:81–4.
Morse JH, Jones AC, Barst RJ, Hodge SE, Wilhelmsen KC, Nygaard TG. Mapping of familial primary pulmonary hypertension locus (PPH1) to chromosome 2q31-q32. Circulation. 1997;95:2603–6.
Nichols WC, Koller DL, Slovis B, Foroud T, Terry VH, Arnold ND, et al. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-32. Nat Genet. 1997;15:277–80.
Girerd B, Montani D, Jais X, Eyries M, Yaici A, Sztrymf B, et al. Genetic counselling in a national referral centre for pulmonary hypertension. Eur Respir J. 2016;47:541–52.
Pfarr N, Szamalek-Hoegel J, Fischer C, Hinderhofer K, Nagel C, Ehlken N, et al. Hemodynamic and clinical onset in patients with hereditary pulmonary arterial hypertension and BMPR2 mutations. Respir Res. 2011;12:99.
Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, et al. Pulmonary arterial hypertension: a current perspective on established and emerging molecular genetic defects. Hum Mutat. 2015;36:1113–27.
Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, et al. A novel channelopathy in pulmonary arterial hypertension. N Engl J Med. 2013;369:351–61.
Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips 3rd JA, et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet. 2012;5:336–43.
Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46:65–9.
Best DH, Sumner KL, Austin ED, Chung WK, Brown LM, Borczuk AC, et al. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. Chest. 2014;145:231–6.
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.
Gomez J, Reguero JR, Alvarez C, Junquera MR, Arango A, Moris C, et al. A semiconductor chip-based next generation sequencing procedure for the main pulmonary hypertension genes. Lung. 2015;193:571–4.
Tenorio J, Navas P, Barrios E, Fernandez L, Nevado J, Quezada CA, et al. A founder EIF2AK4 mutation causes an aggressive form of pulmonary arterial hypertension in Iberian Gypsies. Clin Genet. 2014;88:579–83.
Larkin EK, Newman JH, Austin ED, Hemnes AR, Wheeler L, Robbins IM, et al. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:892–6.
Frydman N, Steffann J, Girerd B, Frydman R, Munnich A, Simonneau G, et al. Pre-implantation genetic diagnosis in pulmonary arterial hypertension due to BMPR2 mutation. Eur Respir J. 2012;39:1534–5.
Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips 3rd JA, et al. Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med. 2001;345:319–24.
Rodríguez Viales R, Eichstaedt CA, Ehlken N, Fischer C, Lichtblau M, Grünig E, et al. Mutation in BMPR2 promoter: a ‘second hit’ for manifestation of pulmonary arterial hypertension? PLoS One. 2015;10:e0133042.
Wang G, Knight L, Ji R, Lawrence P, Kanaan U, Li L, et al. Early onset severe pulmonary arterial hypertension with ‘two-hit’ digenic mutations in both BMPR2 and KCNA5 genes. Int J Cardiol. 2014;177:e167–9.
Maloney JP, Stearman RS, Bull TM, Calabrese DW, Tripp-Addison ML, Wick MJ, et al. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;302:L541–54.
Hinderhofer K, Fischer C, Pfarr N, Szamalek-Hoegel J, Lichtblau M, Nagel C, et al. Identification of a new intronic BMPR2-mutation and early diagnosis of heritable pulmonary arterial hypertension in a large family with mean clinical follow-up of 12 years. PLoS One. 2014;9:e91374.
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.
den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016(37):564–9.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
Montani D, Achouh L, Dorfmüller P, Le Pavec J, Sztrymf B, Tcherakian C, et al. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore). 2008;87:220–33.
Nagel C, Henn P, Ehlken N, D’Andrea A, Blank N, Bossone E, et al. Stress Doppler echocardiography for early detection of systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Res Ther. 2015;17:165.
Caridi G, Gigante M, Ravani P, Trivelli A, Barbano G, Scolari F, et al. Clinical features and long-term outcome of nephrotic syndrome associated with heterozygous NPHS1 and NPHS2 mutations. Clin J Am Soc Nephrol. 2009;4:1065–72.
Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109:1834–41.
Shaky M. Reduced penetrance in human inherited disease. Egyp J Med Hum Gen. 2014;15:103–11.
D’Andrea AD. Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med. 2010;362:1909–19.
Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA, et al. Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet. 2014;94:915–23.
The 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
Pousada G, Baloira A, Valverde D. Complex inheritance in Pulmonary Arterial Hypertension patients with several mutations. Sci Rep. 2016;6:33570.
Montani D, Lau EM, Dorfmuller P, Girerd B, Jais X, Savale L, et al. Pulmonary veno-occlusive disease. Eur Respir J. 2016;47:1518–34.
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307:1621–5.
Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J Biol Chem. 2005;280:29289–99.
Narasimhan J, Staschke KA, Wek RC. Dimerization is required for activation of eIF2 kinase Gcn2 in response to diverse environmental stress conditions. J Biol Chem. 2004;279:22820–32.
He H, Singh I, Wek SA, Dey S, Baird TD, Wek RC, et al. Crystal structures of GCN2 protein kinase C-terminal domains suggest regulatory differences in yeast and mammals. J Biol Chem. 2014;289:15023–34.
Berlanga JJ, Santoyo J, De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem. 1999;265:754–62.