Second Order, Unconditionally Stable, Linear Ensemble Algorithms for the Magnetohydrodynamics Equations

Springer Science and Business Media LLC - Tập 94 - Trang 1-29 - 2023
John Carter1, Daozhi Han1, Nan Jiang2
1Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, USA
2Department of Mathematics, University of Florida, Gainesville, USA

Tóm tắt

We propose two unconditionally stable, linear ensemble algorithms with pre-computable shared coefficient matrices across different realizations for the magnetohydrodynamics equations. The viscous terms are treated by a standard perturbative discretization. The nonlinear terms are discretized fully explicitly within the framework of the generalized positive auxiliary variable approach (GPAV). Artificial viscosity stabilization that modifies the kinetic energy is introduced to improve accuracy of the GPAV ensemble methods. Numerical results are presented to demonstrate the accuracy and robustness of the ensemble algorithms.

Tài liệu tham khảo

Mohebujjaman, M., Rebholz, L.G.: An efficient algorithm for computation of MHD flow ensembles. Comput. Methods Appl. Math. 17(1), 121–137 (2017). https://doi.org/10.1515/cmam-2016-0033 Wei, D., Zhang, Z.: Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE 10(6), 1361–1406 (2017). https://doi.org/10.2140/apde.2017.10.1361 Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014). https://doi.org/10.1016/j.aml.2013.06.017 Mohebujjaman, M., Wang, H., Rebholz, L.G., Mahbub, M.A.A.: An efficient algorithm for simulating ensembles of parameterized MHD flow problems (2021). arXiv:2108.05110 Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4(4), 273–301 (2014). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014007691 Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31(3), 630–651 (2015). https://doi.org/10.1002/num.21908 Jiang, N.: A higher order ensemble simulation algorithm for fluid flows. J. Sci. Comput. 64(1), 264–288 (2015). https://doi.org/10.1007/s10915-014-9932-z Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for time-dependent Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 33(1), 34–61 (2017). https://doi.org/10.1002/num.22070 Gunzburger, M., Jiang, N., Schneier, M.: An ensemble-proper orthogonal decomposition method for the nonstationary Navier–Stokes equations. SIAM J. Numer. Anal. 55(1), 286–304 (2017). https://doi.org/10.1137/16M1056444 Fiordilino, J.A.: A second order ensemble time stepping algorithm for natural convection. SIAM J. Numer. Anal. 56(2), 816–837 (2018). https://doi.org/10.1137/17M1135104 Jiang, N.: A pressure-correction ensemble scheme for computing evolutionary Boussinesq equations. J. Sci. Comput. 80(1), 315–350 (2019). https://doi.org/10.1007/s10915-019-00939-w Gunzburger, M., Jiang, N., Wang, Z.: An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J. Numer. Anal. 39(3), 1180–1205 (2019). https://doi.org/10.1093/imanum/dry029 Jiang, N., Qiu, C.: An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations. Comput. Methods Appl. Mech. Eng. 343, 249–275 (2019). https://doi.org/10.1016/j.cma.2018.08.020 Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank–Nicolson leap-frog method for the Stokes-Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59(1), 401–428 (2021). https://doi.org/10.1137/20M1321644 Jiang, N., Schneier, M.: An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD flows at low magnetic Reynolds number. Numer. Methods Partial Differ. Equ. 34(6), 2129–2152 (2018). https://doi.org/10.1002/num.22281 Carter, J., Jiang, N.: Numerical analysis of a second order ensemble method for evolutionary magnetohydrodynamics equations at small magnetic Reynolds number. Numer. Methods Partial Differ. Equ. (2022). https://doi.org/10.1002/num.22843 Elsasser, W.M.: The hydromagnetic equations. Phys. Rev. 79, 183–183 (1950). https://doi.org/10.1103/PhysRev.79.183 Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). https://doi.org/10.1016/j.jcp.2012.09.020 Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017). https://doi.org/10.1016/j.jcp.2016.12.025 Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017). https://doi.org/10.1016/j.cma.2017.02.011 Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610–20 (2020). https://doi.org/10.1016/j.jcp.2020.109610 Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018) Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019). https://doi.org/10.1137/17M1150153 Yang, Z., Dong, S.: An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J. Comput. Phys. 393, 229–257 (2019). https://doi.org/10.1016/j.jcp.2019.05.018 Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121–46 (2020). https://doi.org/10.1016/j.jcp.2019.109121 Yang, X.: A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Eng. 373, 113502 (2021). https://doi.org/10.1016/j.cma.2020.113502 Li, S.J. Xiaoli, Liu, Z.: New sav-pressure correction methods for the Navier–Stokes equations: stability and error analysis. Math. Comput. https://doi.org/10.1090/mcom/3651 (2021) Jiang, N., Yang, H.: SAV decoupled ensemble algorithms for fast computation of Stokes–Darcy flow ensembles. Comput. Methods Appl. Mech. Eng. 387, 34–114150 (2021). https://doi.org/10.1016/j.cma.2021.114150 Labovsky, A., Layton, W.J., Manica, C.C., Neda, M., Rebholz, L.G.: The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 198(9–12), 958–974 (2009). https://doi.org/10.1016/j.cma.2008.11.004 Li, X., Wang, W., Shen, J.: Stability and error analysis of IMEX SAV schemes for the magneto-hydrodynamic equations. SIAM J. Numer. Anal. 60(3), 1026–1054 (2022). https://doi.org/10.1137/21M1430376 Zhang, C., Ouyang, J., Wang, C., Wise, S.M.: Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn–Hilliard equation. J. Comput. Phys. 423, 35–109772 (2020). https://doi.org/10.1016/j.jcp.2020.109772 Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phys. 456, 110954 (2022). https://doi.org/10.1016/j.jcp.2022.110954 Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model of fluid turbulence. vol. 152/153, pp. 505–519 (2001). https://doi.org/10.1016/S0167-2789(01)00191-9. Advances in nonlinear mathematics and science. https://doi-org.libproxy.mst.edu/10.1016/S0167-2789(01)00191-9 Chen, S., Holm, D.D., Margolin, L.G., Zhang, R.: Direct numerical simulations of the Navier-Stokes alpha model. 133, 66–83 (1999) Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998). https://doi.org/10.1016/S0167-2789(99)00099-8 Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM Math. Model. Numer. Anal. 56(3), 767–789 (2022). https://doi.org/10.1051/m2an/2022020 Li, B., Wang, J., Xu, L.: A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains. SIAM J. Numer. Anal. 58(1), 430–459 (2020). https://doi.org/10.1137/18M1205649 Li, B., Ma, S., Ueda, Y.: Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data. ESAIM Math. Model. Numer. Anal. 56(6), 2105–2139 (2022). https://doi.org/10.1051/m2an/2022073 Li, B., Ma, S., Wang, N.: Second-order convergence of the linearly extrapolated Crank–Nicolson method for the Navier–Stokes equations with \(H^1\) initial data. J. Sci. Comput. 88(3), 20–70 (2021). https://doi.org/10.1007/s10915-021-01588-8 Gunzburger, M.D.: Finite element methods for viscous incompressible flows. Computer Science and Scientific Computing. Academic Press, San Diego (1989). https://doi.org/10.1016/B978-0-12-307350-1.50002-8. https://www.sciencedirect.com/science/article/pii/B9780123073501500028 Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer (2007). https://books.google.com/books?id=ci4c_R0WKYYC Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967). https://doi.org/10.1063/1.1762301 Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The fenics project version 1.5 3 (2015). https://doi.org/10.11588/ans.2015.100.20553 Zhang, G., He, X., Yang, X.: Fully decoupled, linear and unconditionally energy stable time discretization scheme for solving the magneto-hydrodynamic equations. J. Comput. Appl. Math. 369, 112636 (2019). https://doi.org/10.1016/j.cam.2019.112636