Enzymatic, immunological and phylogenetic characterization of Brucella suis urease
Tóm tắt
The sequenced genomes of the Brucella spp. have two urease operons, ure-1 and ure-2, but there is evidence that only one is responsible for encoding an active urease. The present work describes the purification and the enzymatic and phylogenomic characterization of urease from Brucella suis strain 1330. Additionally, the urease reactivity of sera from patients diagnosed with brucellosis was examined. Urease encoded by the ure-1 operon of Brucella suis strain 1330 was purified to homogeneity using ion exchange and hydrophobic interaction chromatographies. The urease was purified 51-fold with a recovery of 12% of the enzyme activity and 0.24% of the total protein. The enzyme had an isoelectric point of 5, and showed optimal activity at pH 7.0 and 28–35°C. The purified enzyme exhibited a Michaelis-Menten saturation kinetics with a K
m
of 5.60 ± 0.69 mM. Hydroxyurea and thiourea are competitive inhibitors of the enzyme with Ki of 1.04 ± 0.31 mM and 26.12 ± 2.30 mM, respectively. Acetohydroxamic acid also inhibits the enzyme in a competitive way. The molecular weight estimated for the native enzyme was between 130–135 kDa by gel filtration chromatography and 157 ± 7 kDa using 5–10% polyacrylamide gradient non-denaturing gel. Only three subunits in SDS-PAGE were identified: two small subunits of 14,000 Da and 15,500 Da, and a major subunit of 66,000 Da. The amino terminal sequence of the purified large subunit corresponded to the predicted amino acid sequence encoded by ureC1. The UreC1 subunit was recognized by sera from patients with acute and chronic brucellosis. By phylogenetic and cluster structure analyses, ureC1 was related to the ureC typically present in the Rhizobiales; in contrast, the ureC2 encoded in the ure-2 operon is more related to distant species. We have for the first time purified and characterized an active urease from B. suis. The enzyme was characterized at the kinetic, immunological and phylogenetic levels. Our results confirm that the active urease of B. suis is a product of ure-1 operon.
Tài liệu tham khảo
Roop RM, Bellaire BH, Valderas MW, Cardelli JA: Adaptation of the Brucellae to their intracellular niche. Mol Microbiol. 2004, 52 (3): 621-630. 10.1111/j.1365-2958.2004.04017.x.
Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H: Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J Bacteriol. 1990, 172 (7): 3569-3576.
Hausinger RP, Karplus PA: Urease. Handbook of Metalloproteins. Edited by: Wieghardt K, Huber R, Poulos TL, Messerschmidt A. 2001, West Sussex, John Wiley & Sons, Ltd, 867-879.
Burne RA, Chen YY: Bacterial ureases in infectious diseases. Microbes Infect. 2000, 2 (5): 533-542. 10.1016/S1286-4579(00)00312-9.
Mobley HL, Island MD, Hausinger RP: Molecular biology of microbial ureases. Microbiol Rev. 1995, 59 (3): 451-480.
Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, et al: Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science. 2007, 316 (5829): 1307-1312. 10.1126/science.1139548.
MBGD – Microbial Genome Database for Comparative Analysis. [http://mbgd.genome.ad.jp]
Dunn BE, Campbell GP, Perez-Perez GI, Blaser MJ: Purification and characterization of urease from Helicobacter pylori. J Biol Chem. 1990, 265 (16): 9464-9469.
Brady CE, Hadfield TL, Hyatt JR, Utts SJ: Acid secretion and serum gastrin levels in individuals with Campylobacter pylori. Gastroenterology. 1988, 94 (4): 923-927.
De Koning-Ward TF, Robins-Browne RM: Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect Immun. 1995, 63 (10): 3790-3795.
Probst P, Hermann E, Meyer zum Buschenfelde KH, Fleischer B: Identification of the Yersinia enterocolitica urease beta subunit as a target antigen for human synovial T lymphocytes in reactive arthritis. Infect Immun. 1993, 61 (10): 4507-4509.
BRENDA – The Comprehensive Enzyme Information System. [http://www.brenda-enzymes.info/]
Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D: BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci. 2002, 27 (1): 54-56. 10.1016/S0968-0004(01)02027-8.
Schomburg I, Chang A, Schomburg D: BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 2002, 30 (1): 47-49. 10.1093/nar/30.1.47.
Westerhoff HV, Kell DB: The methodologies of systems biology. Systems biology: philosophical foundations. Edited by: Boogerd FC, Hofmeyer JH, Westerhoff HV. 2007, Amsterdam, Elsevier, 23-70.
Clemens DL, Lee BY, Horwitz MA: Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J Bacteriol. 1995, 177 (19): 5644-5652.
del Mar Dobao M, Castrillo F, Pineda M: Characterization of urease from the phototropic bacterium Rhodobacter capsulatus E1F1. Curr Microbiol. 1993, 27: 119-123. 10.1007/BF01570869.
Nakano HTS, Watanabe Y: Purification and properties of urease from Brevibacterium ammoniagenes. Agric Biol Chem. 1984, 48: 1495-1502.
Kakimoto S, Miyashita H, Sumino Y, Akiyama S: Properties of acid ureases from Lactobacilus and Streptococcus strains. Agric Biol Chem. 1990, 54: 381-386.
Mobley HL, Jones BD, Penner JL: Urease activity of Proteus penneri. J Clin Microbiol. 1987, 25 (12): 2302-2305.
Sangari FJ, Seoane A, Rodriguez MC, Aguero J, Garcia Lobo JM: Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun. 2007, 75 (2): 774-780. 10.1128/IAI.01244-06.
Eng H, Robertson JA, Stemke GW: Properties of urease from Ureaplasma urealyticum: kinetics, molecular weight, and demonstration of multiple enzyme isoelectric point forms. Can J Microbiol. 1986, 32 (6): 487-493.
Schafer UK, Kaltwasser H: Urease from Staphylococcus saprophyticus: purification, characterization and comparison to Staphylococcus xylosus urease. Arch Microbiol. 1994, 161 (5): 393-399.
Pearson MA, Park IS, Schaller RA, Michel LO, Karplus PA, Hausinger RP: Kinetic and structural characterization of urease active site variants. Biochemistry. 2000, 39 (29): 8575-8584. 10.1021/bi000613o.
Jones BD, Mobley HL: Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect Immun. 1987, 55 (9): 2198-2203.
Mobley HL, Hausinger RP: Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989, 53 (1): 85-108.
Todd MJ, Hausinger RP: Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site. J Biol Chem. 1989, 264 (27): 15835-15842.
Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godfroid J, Walravens K, Letesson JJ: Induction of immune response in BALB/c mice with a DNA vaccine encoding bacterioferritin or P39 of Brucella spp. Infect Immun. 2001, 69 (10): 6264-6270. 10.1128/IAI.69.10.6264-6270.2001.
Rossetti OL, Arese AI, Boschiroli ML, Cravero SL: Cloning of Brucella abortus gene and characterization of expressed 26-kilodalton periplasmic protein: potential use for diagnosis. J Clin Microbiol. 1996, 34 (1): 165-169.
Tabatabai LB, Hennager SG: Cattle serologically positive for Brucella abortus have antibodies to B. abortus Cu-Zn superoxide dismutase. Clin Diagn Lab Immunol. 1994, 1 (5): 506-510.
Bandara AB, Contreras A, Contreras-Rodriguez A, Martins AM, Dobrean V, Poff-Reichow S, Rajasekaran P, Sriranganathan N, Schurig GG, Boyle SM: Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol. 2007, 7: 57-10.1186/1471-2180-7-57.
Appel H, Mertz A, Distler A, Sieper J, Braun J: The 19 kDa protein of Yersinia enterocolitica O:3 is recognized on the cellular and humoral level by patients with Yersinia induced reactive arthritis. J Rheumatol. 1999, 26 (9): 1964-1971.
Dubost JJ, Constantin A, Soubrier M, Ristori JM, Cantagrel A, Bussiere JL: [Does reactive arthritis caused by Brucella exist? Apropos of 4 cases]. Presse Med. 1997, 26 (5): 207-210.
Gungor K, Bekir NA, Namiduru M: Recurrent episcleritis associated with brucellosis. Acta Ophthalmol Scand. 2001, 79 (1): 76-78. 10.1034/j.1600-0420.2001.079001076.x.
Hill-Gaston JS, Lillicrap MS: Arthritis associated with enteric infection. Best Pract Res Clin Rheumatol. 2003, 17 (2): 219-239. 10.1016/S1521-6942(02)00104-3.
Atagunduz P, Appel H, Kuon W, Wu P, Thiel A, Kloetzel PM, Sieper J: HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 2005, 52 (3): 892-901. 10.1002/art.20948.
Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I: The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998, 62 (4): 1315-1352.
Contreras-Rodriguez A, Ramirez-Zavala B, Contreras A, Schurig GG, Sriranganathan N, Lopez-Merino A: Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis. Infect Immun. 2003, 71 (9): 5238-5244. 10.1128/IAI.71.9.5238-5244.2003.
Hamilton-Miller JM, Gargan RA: Rapid screening for urease inhibitors. Invest Urol. 1979, 16 (5): 327-328.
Kaltwasser H, Schlegel HG: NADH-Dependent coupled enzyme assay for urease and other ammonia-producing systems. Anal Biochem. 1966, 16 (1): 132-138. 10.1016/0003-2697(66)90088-1.
Cordeiro CA, Freire AP: Protein determination in permeabilized yeast cells using the Coomassie brilliant blue dye binding assay. Anal Biochem. 1994, 223 (2): 321-323. 10.1006/abio.1994.1591.
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259): 680-685. 10.1038/227680a0.
Matsudaira P: Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987, 262 (21): 10035-10038.
NCBI – National Center for Biotechnology Information. [http://www.ncbi.nlm.nih.gov/]
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Easterby JS: HyperFit – Hyperbolic Regression Analysis of Enzyme Kinetic Data. (version 1.1). 1993
Cornish-Bowden A: Fundamentals of Enzyme Kinetics. 1995, London, Portland Press
Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA. 1979, 76 (9): 4350-4354. 10.1073/pnas.76.9.4350.
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4 (4): 406-425.
Felsenstein J: PHYLIP – Phylogeny Inference Package (version 3.2). Cladistics. 1989, 5: 164-166.
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12 (4): 357-358.
RhizoBase – The Genome Database for Rhizobia. [http://bacteria.kazusa.or.jp/rhizobase/]
KEGG – Kyoto Encyclopedia of Genes and Genomes. [http://www.genome.jp/kegg/]