Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria
Tóm tắt
Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes.
Tài liệu tham khảo
Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P: Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ. 1999, 77 (3): 230-234.
Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K: Resistance of Anopheles gambiae s.s. to pyrethroids in Cote d'Ivoire. Annales de la Societe belge de medecine tropicale. 1993, 73 (4): 291-294.
Akogbeto M, Yakoubou S: [Resistance of malaria vectors to pyrethrins used for impregnating mosquito nets in Benin, West Africa]. Bull Soc Pathol Exot. 1999, 92 (2): 123-130.
Awolola TS, Brooke BD, Hunt RH, Coetze M: Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western Nigeria. Ann Trop Med Parasitol. 2002, 96 (8): 849-852. 10.1179/000349802125002581.
Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, Alloueche A, Curtis CF, Toure YT, Coluzzi M: The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Mol Biol. 2003, 12 (3): 241-245. 10.1046/j.1365-2583.2003.00407.x.
Diabate A, Baldet T, Chandre F, Guiguemde RT, Brengues C, Guillet P, Hemingway J, Hougard JM: First report of the kdr mutation in Anopheles gambiae M form from Burkina Faso, west Africa. Parassitologia. 2002, 44 (3–4): 157-158.
WHO: World Malaria Report 2005. 2005, Document WHO/HTM/MAL/2005 (Geneva, Switzerland), 1102:
Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL, Mwangi RW: Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Medical and veterinary entomology. 1994, 8 (1): 71-75. 10.1111/j.1365-2915.1994.tb00389.x.
Stump AD, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. The American journal of tropical medicine and hygiene. 2004, 70 (6): 591-596.
Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M: Anopheles funestus resistant to pyrethroid insecticides in South Africa. Medical and veterinary entomology. 2000, 14 (2): 181-189. 10.1046/j.1365-2915.2000.00234.x.
N'Guessan R, Corbel V, Akogbeto M, Rowland M: Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerging infectious diseases. 2007, 13 (2): 199-206.
Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998, 7 (2): 179-184. 10.1046/j.1365-2583.1998.72062.x.
Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000, 9 (5): 491-497. 10.1046/j.1365-2583.2000.00209.x.
Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R: Evolution of supergene families associated with insecticide resistance. Science (New York, NY). 2002, 298 (5591): 179-181.
Corbel V, N'Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M: Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 2007, 101 (3): 207-216. 10.1016/j.actatropica.2007.01.005.
David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA. 2005, 102 (11): 4080-4084. 10.1073/pnas.0409348102.
Strode C, Steen K, Ortelli F, Ranson H: Differential expression of the detoxification genes in the different life stages of the malaria vectorAnopheles gambiae. Insect Biochem Mol Biol. 2006, 15 (4): 523-530.
Muller P, Donnelly MJ, Ranson H: Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics. 2007, 8: 36-10.1186/1471-2164-8-36.
Muller P, Chouaibou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H: Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Molecular ecology. 2008, 17 (4): 1145-1155. 10.1111/j.1365-294X.2007.03617.x.
Akogbeto MC, Djouaka RF, Kinde-Gazard DA: Screening of pesticide residues in soil and water samples from agricultural settings. Malar J. 2006, 5: 22-10.1186/1475-2875-5-22.
Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R, Simard F: Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health. 2008, 13 (4): 476-486.
Djouaka RF, Bakare AA, Bankole HS, Doannio JM, Coulibaly ON, Kossou H, Tamo M, Basene HI, Popoola OK, Akogbeto MC: Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?. Malar J. 2007, 6: 159-10.1186/1475-2875-6-159.
Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M: Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malar J. 2006, 5: 16-10.1186/1475-2875-5-16.
He N, Botelho JM, McNall RJ, Belozerov V, Dunn WA, Mize T, Orlando R, Willis JH: Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol. 2007, 37 (2): 135-146. 10.1016/j.ibmb.2006.10.011.
Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005, 38 (12): 1543-1552. 10.1016/j.freeradbiomed.2005.02.026.
Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, Black WCt, Hemingway J, Ranson H: Mapping a quantitative trait locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus. BMC genomics. 2007, 8: 34-10.1186/1471-2164-8-5.
Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL: Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids. Insect Mol Biol. 2008, 17 (1): 19-25.
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF: The genome sequence of Drosophila melanogaster. Science. 2000, 287 (5461): 2185-2195. 10.1126/science.287.5461.2185.
Ranson H, Collins F, Hemingway J: The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95 (24): 14284-14289. 10.1073/pnas.95.24.14284.
Wang JY, McCommas S, Syvanen M: Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet. 1991, 227 (2): 260-266. 10.1007/BF00259679.
Vontas JG, Small GJ, Hemingway J: Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. The Biochemical journal. 2001, 357 (Pt 1): 65-72. 10.1042/0264-6021:3570065.
Tang AH, Tu CP: Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. The Journal of biological chemistry. 1994, 269 (45): 27876-27884.
Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E: Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol. 2001, 31 (4–5): 313-319. 10.1016/S0965-1748(00)00123-5.
Stone BF, Brown AW: Mechanisms of resistance to fenthion in Culex pipiens fatigans Wied. Bulletin of the World Health Organization. 1969, 40 (3): 401-408.
Apperson CS, Georghiou GP: Mechanisms of resistance to organophosphorus insecticides in Culex tarsalis. Journal of economic entomology. 1975, 68 (2): 153-157.
Noppun V, Saito T, Miyata T: Cuticular penetration of S Fenvalerate in fenvalerate-resistant and susceptible strains of the diamondback moth Plutella xylosella L. pestic Biochem Physiol. 1989, 33 (1): 83-87. 10.1016/0048-3575(89)90079-5.
Lin H, Bloomquist JR, Beeman RW, Clark JM: Mechanisms underlying cyclodiene resistance in the red flour beetle, Tribolium castaneum (Herbst). Pestic Biochem Physiol. 1993, 45: 154-164. 10.1006/pest.1993.1018.
Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol. 2007
Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M: Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE. 2008, 3 (5): e2172-10.1371/journal.pone.0002172.
Akogbeto MC, Djouaka R, Noukpo H: [Use of agricultural insecticides in Benin]. Bulletin de la Societe de pathologie exotique (1990). 2005, 98 (5): 400-405.
Tia E, Akogbeto M, Koffi A, Toure M, Adja AM, Moussa K, Yao T, Carnevale P, Chandre E: [Pyrethroid and DDT resistance of Anopheles gambiae s.s. (Diptera: Culicidae) in five agricultural ecosystems from Cote-d'Ivoire]. Bulletin de la Societe de pathologie exotique (1990). 2006, 99 (4): 278-282.
Djouaka RF, Bakare AA, Bankole HS, Doannio JM, Kossou H, Akogbeto MC: Quantification of the efficiency of treatment of Anopheles gambiae breeding sites with petroleum products by local communities in areas of insecticide resistance in the Republic of Benin. Malar J. 2007, 6: 56-10.1186/1475-2875-6-56.
Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, Guillet P, Raymond M: The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol. 2000, 9 (5): 451-455. 10.1046/j.1365-2583.2000.00206.x.
Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai H, Simard F: First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg. 2006, 74 (5): 795-797.
Fanello C, Santolamazza F, della Torre A: Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical and veterinary entomology. 2002, 16 (4): 461-464. 10.1046/j.1365-2915.2002.00393.x.
Clevel WS, Devlin SJ: Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc. 1988, 83 (403): 596-610. 10.2307/2289282.
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B. 1995, 57: 289-300.