Hydralazine target: From blood vessels to the epigenome

Journal of Translational Medicine - Tập 4 Số 1 - 2006
Claudia Arce1, Blanca Segura-Pacheco2, Enrique Pérez-Cárdenas2, Lucía Taja‐Chayeb2, Myrna Candelaria1, Alfonso Dueñnas-Gonzalez2
1Division of Clinical Research, Instituto Nacional de Cancerología, Mexico City, Mexico
2Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas (IIB)/Instituto Nacional de Cancerología, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico

Tóm tắt

AbstractHydralazine was one of the first orally active antihypertensive drugs developed. Currently, it is used principally to treat pregnancy-associated hypertension. Hydralazine causes two types of side effects. The first type is an extension of the pharmacologic effect of the drug and includes headache, nausea, flushing, hypotension, palpitation, tachycardia, dizziness, and salt retention. The second type of side effects is caused by immunologic reactions, of which the drug-induced lupus-like syndrome is the most common, and provides clues to underscoring hydralazine's DNA demethylating property in connection with studies demonstrating the participation of DNA methylation disorders in immune diseases. Abnormalities in DNA methylation have long been associated with cancer. Despite the fact that malignant tumors show global DNA hypomethylation, regional hypermethylation as a means to silence tumor suppressor gene expression has attracted the greatest attention. Reversibility of methylation-induced gene silencing by pharmacologic means, which in turns leads to antitumor effects in experimental and clinical scenarios, has directed efforts toward developing clinically useful demethylating agents. Among these, the most widely used comprise the nucleosides 5-azacytidine and 2'deoxy-5-azacytidine; however, these agents, like current cytotoxic chemotherapy, causes myelosuppression among other side effects that could limit exploitation of their demethylating properties. Among non-nucleoside DNA demethylating drugs currently under development, the oral drug hydralazine possess the ability to reactivate tumor suppressor gene expression, which is silenced by promoter hypermethylationin vitroandin vivo. Decades of extensive hydralazine use for hypertensive disorders that demonstrated hydralazine's clinical safety and tolerability supported its testing in a phase I trial in patients with cancer, confirming its DNA demethylating activity. Hydralazine is currently being evaluated, along with histone deacetylase inhibitors either alone or as adjuncts to chemotherapy and radiation, for hematologic and solid tumors in phase II studies.

Từ khóa


Tài liệu tham khảo

Herting RL, Hunter HL: The physiologic and pharmacologic basis for the clinical treatment of hypertension. Med Clin North Am. 1967, 51: 25-37.

Klein L, O'Connor CM, Gattis WA, Zampino M, de Luca L, Vitarelli A, Fedele F, Gheorghiade M: Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol. 2003, 91: 18F-40F. 10.1016/S0002-9149(02)03336-2.

Magee LA, Cham C, Waterman EJ, Ohlsson A, von Dadelszen P: Hydralazine for treatment of severe hypertension in pregnancy: Meta-analysis. BMJ. 2003, 327: 955-965. 10.1136/bmj.327.7421.955.

Powers DR, Papadakos DJ, Wallin JD: Parenteral hydralazine revisited. J Emerg Med. 1998, 16: 191-196. 10.1016/S0736-4679(97)00287-4.

Ellershaw DC, Gurney AM: Mechanisms of hydralazine induced vasodilation in rabbit aorta and pulmonary artery. Br J Pharmacol. 2001, 134: 621-631. 10.1038/sj.bjp.0704302.

Jacobs M: Mechanism of action of hydralazine on vascular smooth muscle. Biochem Pharmacol. 1984, 33: 2915-2919. 10.1016/0006-2952(84)90216-8.

Bang L, Nielsen-Kudsk JE, Gruhn N, Trautner S, Theilgaard SA, Olesen S-P, Beosgaard S, Aldershvile J: Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels. Eur J Pharmacol. 1998, 361: 43-49. 10.1016/S0014-2999(98)00701-8.

Jounela AJ, Pasanan M, Matilla MJ: Acetylator phenotype and the antihypertensive response to hydralazine. Acta Med Scand. 1975, 197: 303-306.

Johnston GD: Dose response relationship with antihypertensive drugs. Pharmac Ther. 1992, 55: 53-93. 10.1016/0163-7258(92)90029-Y.

Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16: 6.21-10.1101/gad.947102.

Kawasaki H, Taira K: Transcriptional gene silencing by short interfering RNAs. Curr Opin Mol Ther. 2005, 7: 125-131.

Klenova EM, Morse HC, Ohlsson R, Lobanenkov VV: The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol. 2002, 12: 399-414. 10.1016/S1044-579X(02)00060-3.

Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 1986, 321: 209-213. 10.1038/321209a0.

Antequera F, Bird A: Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U SA. 1993, 90: 11995-11999.

Vilkaitis G, Suetake I, Klimasauskas S, Tajima S: Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J Biol Chem. 2005, 280: 64-72.

Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR: DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet. 2003, 33: 61-65. 10.1038/ng1068.

Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006 Jan 3;,

Liu K, Wang YF, Cantemir C, Muller MT: Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol. 2003, 23: 2709-2719. 10.1128/MCB.23.8.2709-2719.2003.

Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science. 2001, 293: 1089-1093. 10.1126/science.1063443.

Zhu WG, Srinivasan K, Dai Z: Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol. 2003, 23: 4056-4065. 10.1128/MCB.23.12.4056-4065.2003.

Nguyen CT, Gonzales FA, Jones PA: Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001, 29: 4598-4606. 10.1093/nar/29.22.4598.

Geiman TM, Robertson KD: Chromatin remodeling, histone modifications, and DNA methylation- how does it all fit together?. Cell Biochem. 2002, 87: 117-125. 10.1002/jcb.10286.

Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K: Structure and dynamic properties of nucleosome core particles. FEBS Lett. 2005, 579: 895-898. 10.1016/j.febslet.2004.11.030.

Khorasanizadeh S: The nucleosome: from genomic organization to genomic regulation. Cell. 2004, 116: 259-272. 10.1016/S0092-8674(04)00044-3.

Eberharter A, Ferreira R, Becker P: Dynamic chromatin: concerted nucleosome remodelling and acetylation. J Biol Chem. 2005, 386: 745-751. 10.1515/BC.2005.087.

Kuo MH, Allis CD: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998, 20: 615-626. 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H.

Davie JR: Covalent modifications of histones: expression from chromatin templates. Curr Opin Genet Dev. 1998, 8: 173-178. 10.1016/S0959-437X(98)80138-X.

Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983, 301: 89-92. 10.1038/301089a0.

Shivapurkar N, Wilson MJ, Poirier LA: Hypomethylation of DNA in ethionine-fed rats. Carcinogenesis. 1984, 5: 989-992.

de Bustros A, Nelkin BD, Silverman A, Ehrlich G, Poiesz B, Baylin SB: The short arm of chromosome 11 is a "hot spot" for hypermethylation in human neoplasia. Proc Natl Acad Sci USA. 1988, 85: 5693-5697.

Laird PW, Jaenisch R: DNA methylation and cancer. Hum Molec Genet. 1994, 3: 1487-1495.

Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989, 83: 155-158. 10.1007/BF00286709.

Santini V, Kantarjian HM, Issa JP: Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001, 134: 573-586.

Szyf M, Targeti NG: DNA methylation in cancer. Ageing Res Rev. 2003, 2: 299-328. 10.1016/S1568-1637(03)00012-6.

Bachman KE: Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003, 3: 89-95. 10.1016/S1535-6108(02)00234-9.

Clark SJ, Melki J: DNA methylation and gene silencing in cancer: which is the guilty part?. Oncogene. 2002, 21: 5380-5387. 10.1038/sj.onc.1205598.

Ahmad M, Rees RC, Ali SA: Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother. 2004, 53: 844-854. 10.1007/s00262-004-0540-x.

Zendman AJ, Ruiter DJ, Van Muijen GN: Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol. 2003, 194: 272-288. 10.1002/jcp.10215.

De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T: The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA. 1996, 93: 7149-7153. 10.1073/pnas.93.14.7149.

Coral S, Sigalotti L, Altomonte M, Engelsberg A, Colizzi F, Cattarossi I, Maraskovsky E, Jager E, Seliger B, Maio M: 5-aza-2'-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res. 2002, 8: 2690-2695.

De Smet C, Lurquin C, Lethé B, Martelange V, Boon T: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999, 19: 7327-7335.

Bert T, Lubomierski N, Gangsauge S, Munch K, Printz H, Prasnikar N, Robbel C, Simon B: Expression spectrum and methylation-dependent regulation of melanoma antigen-encoding gene family members in pancreatic cancer cells. Pancreatology. 2002, 2: 146-154. 10.1159/000055905.

Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F, Fonsatti E, Traversari C, Altomonte M, Maio M: Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2'-deoxycytidine. Cancer Res. 2004, 64: 9167-9171. 10.1158/0008-5472.CAN-04-1442.

Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA: Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Mol Pharmacol. 2004, 65: 18-27. 10.1124/mol.65.1.18.

Seliger B, Maeurer MJ, Ferrone S: Antigen-processing machinery breakdown and tumor growth. Immunol Today. 2000, 21: 455-464. 10.1016/S0167-5699(00)01692-3.

Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS: DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001, 22: 1615-1623. 10.1093/carcin/22.10.1615.

Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, Altomonte M, Maio M: Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2'-deoxycytidine (5-AZA-CdR). J Immunother. 1999, 22: 16-24.

Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F: Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2'-deoxycytidine treatment. Int J Cancer. 2001, 94: 243-251. 10.1002/ijc.1452.

Morimoto Y, Toyota M, Satoh A, Murai M, Mita H, Suzuki H, Takamura Y, Ikeda H, Ishida T, Sato N, Tokino T, Imai K: Inactivation of class II transactivator by DNA methylation and histone deacetylation associated with absence of HLA-DR induction by interferon-gamma in haematopoietic tumour cells. Br J Cancer. 2004, 90: 844-582. 10.1038/sj.bjc.6601602.

Satoh A, Toyota M, Ikeda H, Morimoto Y, Akino K, Mita H, Suzuki H, Sasaki Y, Kanaseki T, Takamura Y, Soejima H, Urano T, Yanagihara K, Endo T, Hinoda Y, Fujita M, Hosokawa M, Sato N, Tokino T, Imai K: Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene. 2004, 23: 8876-8886. 10.1038/sj.onc.1208144.

Jones PA, Taylor SM: Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980, 20: 85-93. 10.1016/0092-8674(80)90237-8.

Abele R, Clavel M, Dodion P, Bruntsch U, Gundersen S, Smyth J, Renard J, van Glabbeke M, Pinedo HM.: The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2'-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin Oncol. 1987, 23: 1921-1924. 10.1016/0277-5379(87)90060-5.

Issa JP: Decitabine. Curr Opin Oncol. 2003, 15: 446-451. 10.1097/00001622-200311000-00007.

Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM: Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004, 103: 1635-1640. 10.1182/blood-2003-03-0687.

Chan AT, Tao Q, Robertson KD, Flinn IW, Mann RB, Klencke B, Kwan WH, Leung TW, Johnson PJ, Ambinder RF: Azacytidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol. 2004, 22: 1373-1381. 10.1200/JCO.2004.04.185.

Goffin J, Eisenhauer E: DNA methyltransferase inhibitors- state of the art. Ann Oncol. 2002, 13: 1699-2116. 10.1093/annonc/mdf314.

Beaulieu N, Fournel M, Macleod A: Antitumor activity of MG98, an antisense oligonucleotide targeting DNA methyltransferase-1 (DNMT1) [Abstract]. Clin Cancer Res. 2001, 7: 3800S-

Davis AJ, Moore MJ, Gelmon KA: Phase 1 and pharmacodynamic study of human DNA methyltransferase (MeTase) antisense oligodeoxynucleotide (ODN), MG98, administered as 21-day infusion q4 weekly [Abstract]. Clin Cancer Res. 2000, 6: 4517S-

Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW, Baker SD, Zhao M, Weber JS: Phase I trial of continuous infusion 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol. 2003, 51: 231-239.

Yoo CB, Cheng JC, Jones PA: Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans. 2004, 32: 910-912. 10.1042/BST0320910.

Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS: Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003, 63: 7563-7570.

Lin X, Asgari K, Putzi JM, Gage WR, Yu X, Cornblatt BS, Kumar A, Piantadosi S, DeWeese TL, De Marzo AM, Nelson WG: Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 2003, 63: 7563-7570.

Villar-Garea A, Fraga MF, Espada J, Esteller M: Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 2003, 63: 4984-4989.

Rubin RL: Drug-induced lupus. Toxicology. 2005, 209: 135-147. 10.1016/j.tox.2004.12.025.

Sarzi-Puttini P, Atzeni F, Capsoni F, Lubrano E, Doria A: Drug-induced lupus erythematosus. Autoimmunity. 2005, 38: 507-518. 10.1080/08916930500285857.

Alarcón-Segovia D, Worthington JW, Ward LE, Wakim KG: Lupus diathesis and the hydralazine síndrome. New Engl J Med. 1965, 272: 462-466.

Price EJ, Venables PJ: Drug-induced lupus. Drug Saf. 1995, 12: 283-290.

Litwin A, Adams LE, Zimmer H, Foad B, Loggie JH, Hess EV: Prospective study of immunologic effects of hydralazine in hypertensive patients. Clin Pharmacol Ther. 1981, 29: 447-56.

Dubroff LM, Reid RJ: Hydralazine-pyrimidine interactions may explain hydralazine-induced lupus erythematosus. Science. 1980, 208: 404-406.

Yamauchi Y, Litwin A, Adams L, Zimmer H, Hess EV: Induction of antibodies to nuclear antigens in rabbits by immunization with hydralazine-human serum albumin conjugates. J Clin Invest. 1975, 56: 958-969.

Richardson B, Kahn L, Lovett EJ, Hudson J: Effect of an inhibitor of DNA methylation on T cells. I. 5-Azacytidine induces T4 expression on T8+ T cells. J Immunol. 1986, 137: 35-39.

Richardson B: Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol. 1986, 17: 456-470. 10.1016/0198-8859(86)90304-6.

Richardson B, Powers D, Hooper F, Yung RL, O'Rourke K: Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum. 1994, 37: 1363-1372.

Yung R, Powers D, Johnson K, Amento E, Carr D, Laing T, Yang J, Chang S, Hemati N, Richardson B: Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupus-like disease in syngeneic mice. J Clin Investig. 1996, 97: 2866-2871.

Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL, Richardson BC: Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest. 1993, 92: 38-53.

Yung RL, Quddus J, Chrisp CE, Johnson KJ, Richardson BC: Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J Immunol. 1995, 154: 3025-3035.

Kaplan MJ, Deng C, Yang J, Richardson BC: DNA methylation in the regulation of T cell LFA-1 expression. Immunol Invest. 2000, 29: 411-425.

Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M: Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990, 33: 1665-1673.

Kaplan MJ, Deng C, Yang J, Richardson BC: DNA methylation in the regulation of T cell LFA-1 expression. Immunol Invest. 2000, 29: 411-425.

Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE, Gross LA, O'Rourke KS, Powers D, Hanash SM, Johnson MA: Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum. 1992, 35: 647-662.

Lu Q, Wu A, Richardson BC: Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol. 2005, 174: 6212-6219.

Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B: Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol. 1988, 140: 2197-2000.

Segura-Pacheco B, Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Mariscal I, Chavez A, Acuna C, Salazar AM, Lizano M, Duenas-Gonzalez A: Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res. 2003, 9: 1596-1603.

Angeles E, Vázquez-Valadez VH, Vázquez-Valadez O, Velzquez-Sanchez AM, Ramirez A, Martinez L, Diaz-Barriga S, Romero-Rojas A, Cabrera G, Lopez-Castañares R, Dueñas-Gonzalez A: Computational studies of 1-Hydrazinophtalazine (Hydralazine) as antineoplastic agent. Docking studies on methyltransferase. Lett Drug Design Discov. 2005, 2: 282-286. 10.2174/1570180054038413.

Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B: Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 2003, 48: 746-56. 10.1002/art.10833.

Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F: Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005, 65: 6305-6311. 10.1158/0008-5472.CAN-04-2957.

Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS, Jones PA: Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2'-deoxycytidine. Mol Cancer Ther. 2005, 4: 1515-1520.

Tang B, Jiang J: [Study of the CpG methylation status of ER alpha gene in estrogen receptor alpha-negative breast cancer cell lines and the role of hydralazine demethylation]. Zhonghua Bing Li Xue Za Zhi. 2005, 34: 283-287.

Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, Cabrera G, Duenas-Gonzalez A: Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 2006, 6: 2-10.1186/1475-2867-6-2.

Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet. 1999, 21: 103-107. 10.1038/5047.

Primeau M, Gagnon J, Momparler RL: Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int J Cancer. 2003, 103: 177-184. 10.1002/ijc.10789.

Zhu WG, Lakshmanan RR, Beal MD, Otterson GA: DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res. 2001, 61: 1327-1333.

Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH: Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 2003, 63: 2164-2171.

Li L, Shi H, Yiannoutsos C, Huang TH, Nephew KP: Epigenetic hypothesis tests for methylation and acetylation in a triple microarray system. J Comput Biol. 2005, 12: 370-390. 10.1089/cmb.2005.12.370.

Busche A, Goldmann T, Naumann U, Steinle A, Brandau S: Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene a. Hum Gene Ther. 2006, 17: 135-146. 10.1089/hum.2006.17.135.

Alaoui-Jamali MA, Dupre I, Qiang H: Prediction of drug sensitivity and drug resistance in cancer by transcriptional and proteomic profiling. Drug Resist Updat. 2004, 7: 245-255. 10.1016/j.drup.2004.06.004.

Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003, 63: 7291-7300.

Zambrano P, Segura-Pacheco B, Pérez-Cárdenas E, Cetina L, Revilla-Vázquez A, Taja-Chayeb L, Chávez-Blanco A, Angeles E, Cabrera G, Sandoval K, Trejo-Becerril C, Chanona-Vilchis J, Dueñas-González A: A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer. 2005, 5: 44-10.1186/1471-2407-5-44.

Sandoval Guerrero K, Revilla Vazquez A, Segura-Pacheco B, Duenas-Gonzalez A: Determination of 5-methyl-cytosine and cytosine in tumor DNA of cancer patients. Electrophoresis. 2005, 26: 1057-1062. 10.1002/elps.200410040.

Verma M, Maruvada P, Srivastava S: Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004, 41: 585-607. 10.1080/10408360490516922.

Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006, 5: 37-50.

Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001, 276: 36734-36741. 10.1074/jbc.M101287200.

Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M: The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003, 22: 3411-3420. 10.1093/emboj/cdg315.

Chávez-Blanco A, Segura-Pacheco B, Pérez-Cárdenas E, Taja-Chayeb L, Cetina L, Candelaria M, Cantú D, Pérez-Plasencia C, Cabrera G, Trejo-Becerril C, Angeles E, González-Fierro A, García-López P, Zambrano P, Dueñas-González A: Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study. Molec Cancer. 2005, 4: 22-10.1186/1476-4598-4-22.

Asch BB, Barcellos-Hoff MH: Epigenetics and breast cancer. J Mammary Gland Biol Neoplasia. 2001, 6: 151-152. 10.1023/A:1011306222533.

Duenas-Gonzalez A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E: Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 2005, 4: 38-10.1186/1476-4598-4-38.

Balch C, Montgomery JS, Paik HI, Kim S, Kim S, Huang TH, Nephew KP: New anti-cancer strategies: epigenetic therapies and biomarkers. Front Biosci. 2005, 10: 1897-1931.

Maslak P, Chanel S, Camacho LH, Soignet S, Pandolfi PP, Guernah I, Warrell R, Nimer S: Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia. 2006, 20: 212-217. 10.1038/sj.leu.2404050.

Garcia-Manero G, Kantarjian H, Sanchez-Gonzalez B, Verstovsek S, Ravandi F, Ryttling M, Cortes J, Yang H, Fiorentino J, Rosner G, Issa J: Results of a Phase I/II Study of the combination of 5-aza-2-deoxycytidine and valproic acid in patients with acute myeloid leukemia and myelodysplastic síndrome [abstract]. Procc ASCO. 2005, 24:

Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA: The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999, 27: 2291-2298. 10.1093/nar/27.11.2291.