Nontrivial contribution of Fröhlich electron-phonon interaction to lattice thermal conductivity of wurtzite GaN

Applied Physics Letters - Tập 109 Số 24 - 2016
Jia‐Yue Yang1, Guangzhao Qin1, Ming Hu1,2
1RWTH Aachen University 1 Institute of Mineral Engineering, Division of Material Science and Engineering, Faculty of Georesources and Materials Engineering, , 52064 Aachen, Germany
2RWTH Aachen University 2 Aachen Institute of Advanced Study in Computational Engineering Science (AICES), , 52062 Aachen, Germany

Tóm tắt

The macroscopic thermal transport is fundamentally determined by the intrinsic interactions among microscopic electrons and phonons. In conventional insulators and semiconductors, phonons dominate the thermal transport, and the contribution of electron-phonon interaction (EPI) is negligible. However, in polar semiconductors, the Fröhlich electron-phonon coupling is strong and its influence on phononic thermal transport is of great significance. In this work, the effect of EPI on phonon dispersion and lattice thermal conductivity of wurtzite gallium nitride (GaN) is comprehensively investigated from the atomistic level by performing first-principles calculations. Due to the existence of relatively large electronegativity difference between Ga and N atoms, the Fröhlich coupling in wurtzite GaN is remarkably strong. Consequently, the lattice thermal conductivity of natural wurtzite GaN at room temperature is reduced by ∼24%–34% when including EPI, and the resulted thermal conductivity value is in better agreement with experiments. Furthermore, the scattering rate of phonons due to EPI, the intrinsic phonon-phonon interaction (PPI) as well as isotope disorder is computed and analyzed. It shows that the EPI scattering rate is comparable to PPI for low-frequency heat-carrying phonons. This work attempts to explore the mechanism of thermal transport beyond intrinsic PPI for polar semiconductors, with a great potential of thermal conductivity engineering for desired performance.

Từ khóa


Tài liệu tham khảo

2010, Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 025015

2013, Nat. Commun., 4, 1452, 10.1038/ncomms2448

2010, 317

2010, Science, 330, 655, 10.1126/science.1195403

2008, Proc. IEEE, 96, 287, 10.1109/JPROC.2007.911060

1960, Electrons and Phonons: The Theory of Transport Phenomena in Solids

2011, Nano Lett., 11, 618, 10.1021/nl103718a

2012, Nano Lett., 12, 5487, 10.1021/nl301971k

2013, Phys. Rev. B, 87, 165201, 10.1103/PhysRevB.87.165201

2007, Appl. Phys. Lett., 91, 231922, 10.1063/1.2822891

2012, Phys. Rev. Lett., 109, 095901, 10.1103/PhysRevLett.109.095901

1995, Appl. Phys. Lett., 67, 1757, 10.1063/1.115040

2005, Solid State Commun., 133, 3, 10.1016/j.ssc.2004.10.028

2014, Comput. Phys. Commun., 185, 1747, 10.1016/j.cpc.2014.02.015

2009, Phys. Rev. B, 80, 125203, 10.1103/PhysRevB.80.125203

2012, Appl. Phys. Lett., 100, 061911, 10.1063/1.3683539

2001, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515

1984, Phys. Rev. B, 30, 849, 10.1103/PhysRevB.30.849

2015, Appl. Phys. Lett., 107, 091902, 10.1063/1.4930025

2016, Comput. Phys. Commun., 209, 116, 10.1016/j.cpc.2016.07.028

1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

2015, Phys. Rev. Lett., 115, 176401, 10.1103/PhysRevLett.115.176401

2015, Comput. Phys. Commun., 196, 36, 10.1016/j.cpc.2015.05.011

2009, J. Phys.: Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502

1977, Solid State Commun., 23, 815, 10.1016/0038-1098(77)90959-0

2001, Phys. Rev. B, 64, 035205, 10.1103/PhysRevB.64.035205

2001, Phys. Rev. Lett., 86, 906, 10.1103/PhysRevLett.86.906

2002, J. Cryst. Growth, 246, 287, 10.1016/S0022-0248(02)01753-0

2003, Phys. Status Solidi B, 240, 447, 10.1002/pssb.200303341

2014, Phys. Rev. B, 89, 184304, 10.1103/PhysRevB.89.184304

2015, Phys. Rev. B, 91, 144304, 10.1103/PhysRevB.91.144304