In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes
Tóm tắt
Functional cardiomyocytes can be efficiently derived from human pluripotent stem cells (hPSCs), which collectively include embryonic and induced pluripotent stem cells. This cellular platform presents exciting new opportunities for development of pharmacologically relevant in vitro screens to detect cardiotoxicity, validate novel drug candidates in preclinical trials and understand complex congenital cardiovascular disorders, to advance current clinical therapies. Here, we discuss the progress and impediments the field has faced in using hPSC-derived cardiomyocytes for these in vitro applications, and highlight that rigorous protocol optimisation and standardisation, scalability and automation are remaining obstacles for the generation of pure, mature and clinically relevant hPSC cardiomyocytes.
Tài liệu tham khảo
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.
Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404. doi:10.1038/74447.
Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920. doi:10.1126/science.1151526.
Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317. doi:10.1038/nature05934.
Davis, R. P., van den Berg, C. W., Casini, S., Braam, S. R., & Mummery, C. L. (2011). Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends in Molecular Medicine, 17(9), 475–484. doi:10.1016/j.molmed.2011.05.001.
Pera, M. F., Reubinoff, B., & Trounson, A. (2000). Human embryonic stem cells. Journal of Cell Science, 113(Pt 1), 5–10.
Denning, C., Allegrucci, C., Priddle, H., Barbadillo-Munoz, M. D., Anderson, D., Self, T., et al. (2006). Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. International Journal of Developmental Biology, 50(1), 27–37. doi:10.1387/ijdb.052107cd.
Harb, N., Archer, T. K., & Sato, N. (2008). The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS One, 3(8), e3001. doi:10.1371/journal.pone.0003001.
Mahlstedt, M. M., Anderson, D., Sharp, J. S., McGilvray, R., Munoz, M. D., Buttery, L. D., et al. (2009). Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnology and Bioengineering, 105(1), 130–140. doi:10.1002/bit.22520.
Desbordes, S. C., Placantonakis, D. G., Ciro, A., Socci, N. D., Lee, G., Djaballah, H., et al. (2008). High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell, 2(6), 602–612. doi:10.1016/j.stem.2008.05.010.
Krawetz, R., Taiani, J. T., Liu, S., Meng, G., Li, X., Kallos, M. S., et al. (2009). Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Engineering. Part C, Methods, 16(4), 573–582. doi:10.1089/ten.TEC.2009.0228.
Li, Y., Powell, S., Brunette, E., Lebkowski, J., & Mandalam, R. (2005). Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnology and Bioengineering, 91(6), 688–698. doi:10.1002/bit.20536.
Ludwig, T. E., Bergendahl, V., Levenstein, M. E., Yu, J., Probasco, M. D., & Thomson, J. A. (2006). Feeder-independent culture of human embryonic stem cells. Nature Methods, 3(8), 637–646. doi:10.1038/nmeth902.
Wang, L., Schulz, T. C., Sherrer, E. S., Dauphin, D. S., Shin, S., Nelson, A. M., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 110(12), 4111–4119. doi:10.1182/blood-2007-03-082586.
Chen, G., Gulbranson, D. R., Hou, Z., Bolin, J. M., Ruotti, V., Probasco, M. D., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 8(5), 424–429. doi:10.1038/nmeth.1593.
Thomas, R. J., Anderson, D., Chandra, A., Smith, N. M., Young, L. E., Williams, D., et al. (2009). Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnology and Bioengineering, 102(6), 1636–1644. doi:10.1002/bit.22187.
Moore, J. C., van Laake, L. W., Braam, S. R., Xue, T., Tsang, S. Y., Ward, D., et al. (2005). Human embryonic stem cells: Genetic manipulation on the way to cardiac cell therapies. Reproductive Toxicology, 20(3), 377–391. doi:10.1016/j.reprotox.2005.04.012.
Gropp, M., Itsykson, P., Singer, O., Ben-Hur, T., Reinhartz, E., Galun, E., et al. (2003). Stable genetic modification of human embryonic stem cells by lentiviral vectors. Molecular Therapy, 7(2), 281–287.
Vallier, L., Rugg-Gunn, P. J., Bouhon, I. A., Andersson, F. K., Sadler, A. J., & Pedersen, R. A. (2004). Enhancing and diminishing gene function in human embryonic stem cells. Stem Cells, 22(1), 2–11. doi:10.1634/stemcells.22-1-2.
Liu, Y. P., Dovzhenko, O. V., Garthwaite, M. A., Dambaeva, S. V., Durning, M., Pollastrini, L. M., et al. (2004). Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein. Stem Cells and Development, 13(6), 636–645. doi:10.1089/scd.2004.13.636.
Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 11(7), 514–518.
Gerrard, L., Zhao, D., Clark, A. J., & Cui, W. (2005). Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells, 23(1), 124–133. doi:10.1634/stemcells.2004-0102.
Braam, S. R., Denning, C., Matsa, E., Young, L. E., Passier, R., & Mummery, C. L. (2008). Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nature Protocols, 3(9), 1435–1443. doi:10.1038/nprot.2008.140.
Chang, T., Zheng, W., Tsark, W., Bates, S., Huang, H., Lin, R. J., et al. (2011). Brief report: Phenotypic rescue of induced pluripotent stem cell-derived motoneurons of a spinal muscular atrophy patient. Stem Cells, 29(12), 2090–2093. doi:10.1002/stem.749.
Hay, D. C., Sutherland, L., Clark, J., & Burdon, T. (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells, 22(2), 225–235. doi:10.1634/stemcells.22-2-225.
Liu, G. H., Barkho, B. Z., Ruiz, S., Diep, D., Qu, J., Yang, S. L., et al. (2011). Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 472(7342), 221–225. doi:10.1038/nature09879.
Costa, M., Dottori, M., Sourris, K., Jamshidi, P., Hatzistavrou, T., Davis, R., et al. (2007). A method for genetic modification of human embryonic stem cells using electroporation. Nature Protocols, 2(4), 792–796. doi:10.1038/nprot.2007.105.
Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29(8), 731–734. doi:10.1038/nbt.1927.
Zwaka, T. P., & Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nature Biotechnology, 21(3), 319–321. doi:10.1038/nbt788.
Elliott, D. A., Braam, S. R., Koutsis, K., Ng, E. S., Jenny, R., Lagerqvist, E. L., et al. (2011). NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 8(12), 1037–1040. doi:10.1038/nmeth.1740.
Davis RP, Grandela C, Sourris K, Hatzistavrou T, Dottori M, Elefanty AG, Stanley EG, Costa M (2009) Generation of human embryonic stem cell reporter knock-in lines by homologous recombination. Curr Protoc Stem Cell Biol Chapter 5:Unit 5B 1 1 1–34. doi:10.1002/9780470151808.sc05b01s11
Nieminen, M., Tuuri, T., & Savilahti, H. (2010). Genetic recombination pathways and their application for genome modification of human embryonic stem cells. Experimental Cell Research, 316(16), 2578–2586. doi:10.1016/j.yexcr.2010.06.004.
Tolar, J., Xia, L., Riddle, M. J., Lees, C. J., Eide, C. R., McElmurry, R. T., et al. (2011). Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. The Journal of Investigative Dermatology, 131(4), 848–856. doi:10.1038/jid.2010.346.
Sebastiano, V., Maeder, M. L., Angstman, J. F., Haddad, B., Khayter, C., Yeo, D. T., et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells, 29(11), 1717–1726. doi:10.1002/stem.718.
Wang, Y., Zheng, C. G., Jiang, Y., Zhang, J., Chen, J., Yao, C., et al. (2012). Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Research. doi:10.1038/cr.2012.23.
Narsinh, K., Narsinh, K. H., & Wu, J. C. (2011). Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circulation Research, 108(9), 1146–1156. doi:10.1161/CIRCRESAHA.111.240374.
Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630. doi:10.1016/j.stem.2010.08.012.
Onder, T. T., Kara, N., Cherry, A., Sinha, A. U., Zhu, N., Bernt, K. M., et al. (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature. doi:10.1038/nature10953.
Hanna, J., Markoulaki, S., Schorderet, P., Carey, B. W., Beard, C., Wernig, M., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–264. doi:10.1016/j.cell.2008.03.028.
Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., & Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702. doi:10.1126/science.1154884
Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4), 434–441. doi:10.1016/j.stem.2009.08.021.
Ghosh, Z., Wilson, K. D., Wu, Y., Hu, S., Quertermous, T., & Wu, J. C. (2010). Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One, 5(2), e8975. doi:10.1371/journal.pone.0008975.
Burridge, P. W., Anderson, D., Priddle, H., Barbadillo Munoz, M. D., Chamberlain, S., Allegrucci, C., et al. (2007). Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells, 25(4), 929–938. doi:10.1634/stemcells.2006-0598.
Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28. doi:10.1016/j.stem.2011.12.013.
Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation, 107(21), 2733–2740. doi:10.1161/01.CIR.0000068356.38592.68.
Burridge, P. W., Thompson, S., Millrod, M. A., Weinberg, S., Yuan, X., Peters, A., et al. (2011). A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One, 6(4), e18293. doi:10.1371/journal.pone.0018293.
Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2), 228–240. doi:10.1016/j.stem.2010.12.008.
Yu, P., Pan, G., Yu, J., & Thomson, J. A. (2011). FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell, 8(3), 326–334. doi:10.1016/j.stem.2011.01.001.
Paige, S. L., Osugi, T., Afanasiev, O. K., Pabon, L., Reinecke, H., & Murry, C. E. (2010). Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One, 5(6), e11134. doi:10.1371/journal.pone. 0011134.
Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y., & Terzic, A. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23. doi:10.1007/s12265-009-9150-5.
Anderson, D., Self, T., Mellor, I. R., Goh, G., Hill, S. J., & Denning, C. (2007). Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Molecular Therapy, 15(11), 2027–2036. doi:10.1038/sj.mt.6300303.
Huber, I., Itzhaki, I., Caspi, O., Arbel, G., Tzukerman, M., Gepstein, A., et al. (2007). Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. The FASEB Journal, 21(10), 2551–2563. doi:10.1096/fj.05-5711com.
Dubois, N. C., Craft, A. M., Sharma, P., Elliott, D. A., Stanley, E. G., Elefanty, A. G., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnology, 29(11), 1011–1018. doi:10.1038/nbt.2005.
Van Hoof, D., Dormeyer, W., Braam, S. R., Passier, R., Monshouwer-Kloots, J., Ward-van Oostwaard, D., et al. (2010). Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. Journal of Proteome Research, 9(3), 1610–1618. doi:10.1021/pr901138a.
Chan, J. W., Lieu, D. K., Huser, T., & Li, R. A. (2009). Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy. Analytical Chemistry, 81(4), 1324–1331. doi:10.1021/ac801665m.
Pascut, F. C., Goh, H. T., George, V., Denning, C., & Notingher, I. (2011). Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells. Journal of Biomedical Optics, 16(4), 045002. doi:10.1117/1.3570302.
Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41. doi:10.1161/CIRCRESAHA.108.192237.
Fu, J.-D., H-f, T., Siu, C.-W., Moore, J. C., Lieu, D. K., Liao, S.-Y., et al. (2008). Driven maturation of embryonic stem cell-derived cardiomyocytes confers post-transplantation safety. Cell Research, 18(S1), S132.
Otsuji, T. G., Minami, I., Kurose, Y., Yamauchi, K., Tada, M., & Nakatsuji, N. (2010). Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. Stem Cell Research, 4(3), 201–213. doi:10.1016/j.scr.2010.01.002.
Rajala, K., Pekkanen-Mattila, M., & Aalto-Setala, K. (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells International, 2011, 383709. doi:10.4061/2011/383709.
Beqqali, A., Kloots, J., Ward-van Oostwaard, D., Mummery, C., & Passier, R. (2006). Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells, 24(8), 1956–1967. doi:10.1634/stemcells.2006-0054.
Bu, L., Jiang, X., Martin-Puig, S., Caron, L., Zhu, S., Shao, Y., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460(7251), 113–117. doi:10.1038/nature08191.
Xu, H., Yi, B. A., & Chien, K. R. (2011). Shortcuts to making cardiomyocytes. Nature Cell Biology, 13(3), 191–193. doi:10.1038/ncb0311-191.
Hudson, J. E., & Zimmermann, W. H. (2011). Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 51(3), 277–279. doi:10.1016/j.yjmcc.2011.06.011.
Dickson, M., & Gagnon, J. P. (2004). Key factors in the rising cost of new drug discovery and development. Nature Reviews. Drug Discovery, 3(5), 417–429.
Terrar, D. A., Wilson, C. M., Graham, S. G., Bryant, S. M., & Heath, B. M. (2007). Comparison of guinea-pig ventricular myocytes and dog Purkinje fibres for in vitro assessment of drug-induced delayed repolarization. Journal of Pharmacological and Toxicological Methods, 56(2), 171–185. doi:10.1016/j.vascn.2007.04.005.
Pouton, C. W., & Haynes, J. M. (2007). Embryonic stem cells as a source of models for drug discovery. Nature Reviews. Drug Discovery, 6(8), 605–616. doi:10.1038/nrd2194.
Fermini, B., & Fossa, A. A. (2003). The impact of drug-induced QT interval prolongation on drug discovery and development. Nature Reviews. Drug Discovery, 2(6), 439–447. doi:10.1038/nrd1108.
Dick, E., Rajamohan, D., Ronksley, J., & Denning, C. (2010). Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochemical Society Transactions, 38(4), 1037–1045. doi:10.1042/BST0381037.
Ma, J., Guo, L., Fiene, S. J., Anson, B. D., Thomson, J. A., Kamp, T. J., et al. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. American Journal of Physiology—Heart and Circulatory Physiology, 301(5), H2006–H2017. doi:10.1152/ajpheart.00694.2011.
Mehta, A., Chung, Y. Y., Ng, A., Iskandar, F., Atan, S., Wei, H., et al. (2011). Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovascular Research, 91(4), 577–586. doi:10.1093/cvr/cvr132.
Yokoo, N., Baba, S., Kaichi, S., Niwa, A., Mima, T., Doi, H., et al. (2009). The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 387(3), 482–488. doi:10.1016/j.bbrc.2009.07.052.
Braam, S. R., Tertoolen, L., van de Stolpe, A., Meyer, T., Passier, R., & Mummery, C. L. (2010). Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research, 4(2), 107–116. doi:10.1016/j.scr.2009.11.004.
Mummery, C. L., Davis, R. P., & Krieger, J. E. (2010). Challenges in using stem cells for cardiac repair. Science Translational Medicine, 2(27), 27ps17. doi:10.1126/scitranslmed.3000558.
Foldes, G., Mioulane, M., Wright, J. S., Liu, A. Q., Novak, P., Merkely, B., et al. (2011). Modulation of human embryonic stem cell-derived cardiomyocyte growth: A testbed for studying human cardiac hypertrophy? Journal of Molecular and Cellular Cardiology, 50(2), 367–376. doi:10.1016/j.yjmcc.2010.10.029.
Tropel, P., Tournois, J., Come, J., Varela, C., Moutou, C., Fragner, P., et al. (2010). High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis. In Vitro Cellular & Developmental Biology—Animal, 46(3–4), 376–385. doi:10.1007/s11626-010-9300-8.
Verlinsky, Y., Strelchenko, N., Kukharenko, V., Rechitsky, S., Verlinsky, O., Galat, V., et al. (2005). Human embryonic stem cell lines with genetic disorders. Reproductive Biomedicine Online, 10(1), 105–110.
Puri, M. C., & Nagy, A. (2012). Concise review: Embryonic stem cells versus induced pluripotent stem cells: The game is on. Stem Cells, 30(1), 10–14. doi:10.1002/stem.788.
Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13(5), 497–505.
Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886. doi:10.1016/j.cell.2008.07.041
Matsa, E., Rajamohan, D., Dick, E., Young, L., Mellor, I., Staniforth, A., et al. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962. doi:10.1093/eurheartj/ehr073.
Kazuki, Y., Hiratsuka, M., Takiguchi, M., Osaki, M., Kajitani, N., Hoshiya, H., et al. (2010). Complete genetic correction of ips cells from Duchenne muscular dystrophy. Molecular Therapy, 18(2), 386–393. doi:10.1038/mt.2009.274.
Bokil, N. J., Baisden, J. M., Radford, D. J., & Summers, K. M. (2010). Molecular genetics of long QT syndrome. Molecular Genetics and Metabolism, 101(1), 1–8. doi:10.1016/j.ymgme.2010.05.011.
Hofman, N., van Lochem, L. T., & Wilde, A. A. (2010). Genetic basis of malignant channelopathies and ventricular fibrillation in the structurally normal heart. Future Cardiology, 6(3), 395–408. doi:10.2217/fca.10.11.
Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–1409. doi:10.1056/NEJMoa0908679.
Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305. doi:10.1038/nature10761.
Woodcock, J. (2007). The prospects for "personalized medicine" in drug development and drug therapy. Clinical Pharmacology and Therapeutics, 81(2), 164–169. doi:10.1038/sj.clpt.6100063.
Han, Y., Miller, A., Mangada, J., Liu, Y., Swistowski, A., Zhan, M., et al. (2009). Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One, 4(9), e7155. doi:10.1371/journal.pone.0007155.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.
Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221. doi:10.1126/science.1158799.
Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.
Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.
Hester, M. E., Song, S., Miranda, C. J., Eagle, A., Schwartz, P. H., & Kaspar, B. K. (2009). Two factor reprogramming of human neural stem cells into pluripotency. PLoS One, 4(9), e7044. doi:10.1371/journal.pone.0007044.
Kim, J. B., Greber, B., Arauzo-Bravo, M. J., Meyer, J., Park, K. I., Zaehres, H., et al. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature, 461(7264), 643–649. doi:10.1038/nature08436.
Ebert, A. D., Yu, J., Rose, F. F., Mattis, V. B., Lorson, C. L., Thomson, J. A., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280.
Carey, B. W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., et al. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 157–162. doi:10.1073/pnas.0811426106.
Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., et al. (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977. doi:10.1016/j.cell.2009.02.013.
Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775. doi:10.1038/nature07864.
Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–2674. doi:10.1002/stem.201.
Si-Tayeb, K., Noto, F. K., Sepac, A., Sedlic, F., Bosnjak, Z. J., Lough, J. W., et al. (2010). Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Developmental Biology, 10, 81. doi:10.1186/1471-213X-10-81.
Jia, F., Wilson, K. D., Sun, N., Gupta, D. M., Huang, M., Li, Z., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7(3), 197–199. doi:10.1038/nmeth.1426.
Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I. I., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801. doi:10.1126/science.1172482.
Kim, D., Kim, C.-H., Moon, J.-I., Chung, Y.-G., Chang, M.-Y., Han, B.-S., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472–476.
Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381–384. doi:10.1016/j.stem.2009.04.005.
Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85(8), 348–362. doi:JST.JSTAGE/pjab/85.348.
Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano, Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8(6), 633–638. doi:10.1016/j.stem.2011.05.001.
Tanaka, T., Tohyama, S., Murata, M., Nomura, F., Kaneko, T., Chen, H., et al. (2009). In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 385(4), 497–502. doi:10.1016/j.bbrc.2009.05.073.
Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I. H., et al. (2009). Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120(15), 1513–1523. doi:10.1161/CIRCULATIONAHA.109.868885.
Dick, E., Matsa, E., Bispham, J., Reza, M., Guglieri, M., Staniforth, A., et al. (2011). Two new protocols to enhance the production and isolation of human induced pluripotent stem cell lines. Stem Cell Research, 6(2), 158–167. doi:10.1016/j.scr.2010.10.002.
Carvajal-Vergara, X., Sevilla, A., D'Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299), 808–812. doi:10.1038/nature09005.
Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.
Lahti, A. L., Kujala, V. J., Chapman, H., Koivisto, A. P., Pekkanen-Mattila, M., Kerkela, E., et al. (2011). Human disease model for long QT syndrome type 2 using iPS cells demonstrates arrhythmogenic characteristics in cell culture. Disease Models & Mechanisms. doi:10.1242/dmm.008409.
Fatima, A., Xu, G., Shao, K., Papadopoulos, S., Lehmann, M., Arnaiz-Cot, J. J., et al. (2011). In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cellular Physiology and Biochemistry, 28(4), 579–592. doi:10.1159/000335753.
Jung, C. B., Moretti, A., Schnitzler, M. M., Iop, L., Storch, U., Bellin, M., et al. (2011). Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Molecular Medicine. doi:10.1002/emmm.201100194.
Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. doi:10.1038/nature09855.
Pasca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A. M., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17(12), 1657–1662. doi:10.1038/nm.2576.