Photoluminescence characterization of ultrahigh purity silicon

Journal of Electronic Materials - Tập 18 - Trang 681-687 - 1989
Kimberly L. Schumacher1, Raymond L. Whitney2
1Hughes Research Laboratories, Malibu
2Santa Barbara Research Center, Goleta

Tóm tắt

When photoluminescence (PL) measurements on silicon are calibrated against an established measurement technique, they become a powerful characterization tool capable of quantitatively identifying impurities. PL is particularly useful for characterizing ultrahigh purity silicon, due to its ability to determine the concentrations of the shallow impurities down to ≈5 × 1010 atoms-cm−3. We have utilized variable temperature Halleffect measurements to calibrate PL measurements made at 4.2 K on ultrahigh purity float-zone silicon, establishing calibration relationships to determine boron, phosphorus, and gallium concentrations. The concentrations range from the low −1012 atoms-cm-3 for phosphorus and boron, to 1 × 1014 atoms-cm−3 for boron and 1 × 1016 atoms-cm−3 for phosphorus. The preliminary gallium calibration concentration range is from the high-1012 to the mid-1010 atoms-cm3. Previous PL calibrations based on variable temperature Hall-effect measurements have not produced the theoretically expected proportionality between the impurity concentration and the PL line intensities of the transverse-optical phonon-assisted replicas of the impurity bound exciton normalized to the PL line intensity of the free-exciton. By performing the PL measurements at a fixed free-exciton density, we have achieved the theoretically expected proportionality. The experimental methods and an overview of the theory concerning fixed free-exciton con-ditions, the associated Hall-effect analyses, and the PL calibrations are presented.

Tài liệu tham khảo

M. Tajima and A. Yusa, Proc. Third International Conf. on NTD Si, pp. 377–394 (Jens Guldberg, ed., Plenum Press, New York, 1980). H. Nakayama, T. Nishino, and Y. Hamakawa, Jpn. J. Appl. Phys.19, 501 (1980). A. S. Kaminiskii, L. I. Kolesnik, B. M. Leiferov, and Ya. E. Pokrovskii, J. Appl. Spectrosc.36, 516 (1982). P. McL. Colley and E. C. Lightowlers, Semicond. Sci. Tech.2, 157 (1987). W. M. Duncan, M. L. Eastwood, and H-L. Tsai, “Fourier Transform Photoluminescence Analysis of Trace Impurities and Defects in Silicon,” Mat. Res. Soc. Symp. Proc.69, pp. 225–230 (N. Cheung and M.-A. Nicolet, eds., The Materials Research Society, Pittsburgh, PA, 1986). G. S. Mitchard and T. C. McGill, Appl. Phys. Lett.37, 959 (1980). Meng Qinghui, Yu Kun, Li Yongkang, Xu Zhenjia, Chen Tingjie, Wu Lingxi, and Xu Shouding, Chin. J. Semicond.4,86 (1983). L. Solymar and D. Walsh,Lectures on the Electrical Properties of Materials, p. 172 (Oxford University Press, Oxford, 1984). J. C. Irvin, Bell Syst. Tech.J.41, 387 (1962). Hiroshi Nakayama, Ken-ichi Ohnishi, Hirotoshi Sawada, Taneo Nishino, and Yoshihiro Hamakawa, J. Phys. Soc. Jpn.46, 553 (1979). A. T. Hunter, unpublished. R. B. Hammond and R. N. Silver, Phys. Rev. Lett.42, 523 (1979). R. Baron, M. H. Young, J. K. Neeland, and O. J. Marsh, “ Characterization of High Resistivity Silicon by Hall Measurements,”Semiconductor Silicon 1977 pp. 367–376 Haward R. Huff and Erhard Sirtl, eds., The Electrochemical Society, Princeton, New Jersey). A more general reference is J. S. Blakemore,Semiconductor Statistics, (Pergamon Press, New York, 1962; currently in print as: Dover Publications, Inc., New York, 1987). R. S. Turley, private communication. G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, Phys. Rev. B12, 3318 (1975). Our best measurements. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, Phys. Rev. B12, 2265 (1975). H. D. Barber, Solid-State Electron.10, 1039 (1967). R. R. Hart, L. D. Albert, N. G. Skinner, M. H. Young, R. Baron, and O. J. Marsh,Neutron Transmutation Doping inSemiconductors, pp. 345–354 (Jon M. Meese, ed. Plenum Publishing Corporation, New York, 1979). Raymond L. Whitney and Kimberly L. Schumacher, Characterization of Ultra-High Purity Silicon for Extrinsic LWIR Detector Applications Using Hall-Effect and Photoluminescence Measurements, IRIS Infrared Materials Specialty Conference, June 1986.