Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe?

Yanqing Huang1, Daniel Lin2, Cullen M. Taniguchi3
1The University of Texas at MD Anderson, Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA;
2The University of Texas at MD Anderson, Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, USA
3The University of Texas at MD Anderson, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguilera, T.A., Rafat, M., Castellini, L., Shehade, H., Kariolis, M.S., Hui, A.B.Y., Stehr, H., von Eyben, R., Jiang, D., Ellies, L.G., Koong, A.C., Diehn, M., Rankin, E.B., Graves, E.E., and Giaccia, A.J. (2016). Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun 7, 13898.

Bishop, T., Gallagher, D., Pascual, A., Lygate, C.A., de Bono, J.P., Nicholls, L.G., Ortega-Saenz, P., Oster, H., Wijeyekoon, B., Sutherland, A.I., Grosfeld, A., Aragones, J., Schneider, M., van Geyte, K., Teixeira, D., Diez-Juan, A., Lopez-Barneo, J., Channon, K.M., Maxwell, P.H., Pugh, C.W., Davies, A.M., Carmeliet, P., and Ratcliffe, P.J. (2008). Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol 28, 3386–3400.

Bodi, I., Bishopric, N.H., Discher, D.J., Wu, X., and Webster, K.A. (1995). Cell-specificity and signaling pathway of endothelin-1 gene regulation by hypoxia. Cardiovasc Res 30, 975–984.

Branco-Price, C., Zhang, N., Schnelle, M., Evans, C., Katschinski, D.M., Liao, D., Ellies, L., and Johnson, R.S. (2012). Endothelial cell HIF-1a and HIF-2a differentially regulate metastatic success. Cancer Cell 21, 52–65.

Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4- hydroxylases that modify HIF. Science 294, 1337–1340.

Casazza, A., Laoui, D., Wenes, M., Rizzolio, S., Bassani, N., Mambretti, M., Deschoemaeker, S., Van Ginderachter, J.A., Tamagnone, L., and Mazzone, M. (2013). Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709.

Chan, D.A., and Giaccia, A.J. (2010). PHD2 in tumour angiogenesis. Br J Cancer 103, 1–5.

Chan, D.A., Kawahara, T.L.A., Sutphin, P.D., Chang, H.Y., Chi, J.T., and Giaccia, A.J. (2009). Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15, 527–538.

Chen, S., Zhang, M., Xing, L., Wang, Y., Xiao, Y., and Wu, Y. (2015). HIF-1a contributes to proliferation and invasiveness of neuroblastoma cells via SHH signaling. PLoS ONE 10, e0121115.

Chen, W., Hill, H., Christie, A., Kim, M.S., Holloman, E., Pavia-Jimenez, A., Homayoun, F., Ma, Y., Patel, N., Yell, P., Hao, G., Yousuf, Q., Joyce, A., Pedrosa, I., Geiger, H., Zhang, H., Chang, J., Gardner, K.H., Bruick, R.K., Reeves, C., Hwang, T.H., Courtney, K., Frenkel, E., Sun, X., Zojwalla, N., Wong, T., Rizzi, J.P., Wallace, E.M., Josey, J.A., Xie, Y., Xie, X.J., Kapur, P., McKay, R.M., and Brugarolas, J. (2016). Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117.

Chiavarina, B., Martinez-Outschoorn, U.E., Whitaker-Menezes, D., Howell, A., Tanowitz, H.B., Pestell, R.G., Sotgia, F., and Lisanti, M.P. (2012). Metabolic reprogramming and two-compartment tumor metabolism. Cell Cycle 11, 3280–3289.

Cho, H., Du, X., Rizzi, J.P., Liberzon, E., Chakraborty, A.A., Gao, W., Carvo, I., Signoretti, S., Bruick, R.K., Josey, J.A., Wallace, E.M., and Kaelin, W.G. (2016). On-target efficacy of a HIF-2a antagonist in preclinical kidney cancer models. Nature 539, 107–111.

Clever, D., Roychoudhuri, R., Constantinides, M.G., Askenase, M.H., Sukumar, M., Klebanoff, C.A., Eil, R.L., Hickman, H.D., Yu, Z., Pan, J.H., Palmer, D.C., Phan, A.T., Goulding, J., Gattinoni, L., Goldrath, A.W., Belkaid, Y., and Restifo, N.P. (2016). Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166, 1117–1131.e14.

Colgan, S.P., and Taylor, C.T. (2010). Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7, 281–287.

Cooke, V.G., LeBleu, V.S., Keskin, D., Khan, Z., O’Connell, J.T., Teng, Y., Duncan, M.B., Xie, L., Maeda, G., Vong, S., Sugimoto, H., Rocha, R.M., Damascena, A., Brentani, R.R., and Kalluri, R. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81.

Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Celis, E., Quiceno, D.G., Padhya, T., McCaffrey, T.V., McCaffrey, J.C., and Gabrilovich, D.I. (2010). HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207, 2439–2453.

Cox, T.R., Rumney, R.M.H., Schoof, E.M., Perryman, L., Høye, A.M., Agrawal, A., Bird, D., Latif, N.A., Forrest, H., Evans, H.R., Huggins, I.D., Lang, G., Linding, R., Gartland, A., and Erler, J.T. (2015). The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110.

Cramer, T., Yamanishi, Y., Clausen, B.E., Förster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., Firestein, G.S., Gerber, H.P., Ferrara, N., and Johnson, R.S. (2003). HIF-1a is essential for myeloid cell-mediated inflammation. Cell 112, 645–657.

Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., Luo, W., Zeller, K., Shimoda, L., Topalian, S.L., Semenza, G.L., Dang, C.V., Pardoll, D.M., and Pan, F. (2011). Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784.

Doedens, A.L., Phan, A.T., Stradner, M.H., Fujimoto, J.K., Nguyen, J.V., Yang, E., Johnson, R.S., and Goldrath, A.W. (2013). Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat Immunol 14, 1173–1182.

Doedens, A.L., Stockmann, C., Rubinstein, M.P., Liao, D., Zhang, N., DeNardo, D.G., Coussens, L.M., Karin, M., Goldrath, A.W., and Johnson, R.S. (2010). Macrophage expression of hypoxia-inducible factor- 1alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70, 7465–7475.

Epstein, A.C.R., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J., and Ratcliffe, P.J. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54.

Erkan, M., Hausmann, S., Michalski, C.W., Fingerle, A.A., Dobritz, M., Kleeff, J., and Friess, H. (2012). The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9, 454–467.

Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L., and Coukos, G. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230.

Fraisl, P., Aragonés, J., and Carmeliet, P. (2009). Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8, 139–152.

Frantz, C., Stewart, K.M., and Weaver, V.M. (2010). The extracellular matrix at a glance. J Cell Sci 123, 4195–4200.

Garvalov, B.K., Foss, F., Henze, A.T., Bethani, I., Gräf-Höchst, S., Singh, D., Filatova, A., Dopeso, H., Seidel, S., Damm, M., Acker-Palmer, A., and Acker, T. (2014). PHD3 regulates EGFR internalization and signalling in tumours. Nat Commun 5, 5577.

Gilkes, D.M., Chaturvedi, P., Bajpai, S., Wong, C.C., Wei, H., Pitcairn, S., Hubbi, M.E., Wirtz, D., and Semenza, G.L. (2013). Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res 73, 3285–3296.

Giordano, F.J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115, 500–508.

Goda, N., Ryan, H.E., Khadivi, B., McNulty, W., Rickert, R.C., and Johnson, R.S. (2003). Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23, 359–369.

Goldberg, M.A., Dunning, S.P., and Bunn, H.F. (1988). Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415.

Goldberg, M.A., Glass, G.A., Cunningham, J.M., and Bunn, H.F. (1987). The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84, 7972–7976.

Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., and Simon, M.C. (2007). HIF-2a promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11, 335–347.

Graham, C.H., Forsdike, J., Fitzgerald, C.J., and Macdonald-Goodfellow, S. (1999). Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80, 617–623.

Hackenbeck, T., Knaup, K.X., Schietke, R., Schödel, J., Willam, C., Wu, X., Warnecke, C., Eckardt, K.U., and Wiesener, M.S. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle 8, 1386–1395.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

Harada, H., Inoue, M., Itasaka, S., Hirota, K., Morinibu, A., Shinomiya, K., Zeng, L., Ou, G., Zhu, Y., Yoshimura, M., McKenna, W.G., Muschel, R.J., and Hiraoka, M. (2012). Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun 3, 783.

Heikkilä, M., Pasanen, A., Kivirikko, K.I., and Myllyharju, J. (2011). Roles of the human hypoxia-inducible factor (HIF)-3a variants in the hypoxia response. Cell Mol Life Sci 68, 3885–3901.

Henze, A.T., Garvalov, B.K., Seidel, S., Cuesta, A.M., Ritter, M., Filatova, A., Foss, F., Dopeso, H., Essmann, C.L., Maxwell, P.H., Reifenberger, G., Carmeliet, P., Acker-Palmer, A., and Acker, T. (2014). Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 5, 5582.

Hewitson, K.S., McNeill, L.A., Elkins, J.M., and Schofield, C.J. (2003). The role of iron and 2-oxoglutarate oxygenases in signalling. Biochm Soc Trans 31, 510–515.

Huang, L.E., and Bunn, H.F. (2003). Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278, 19575–19578.

Huang, L.E., Gu, J., Schau, M., and Bunn, H.F. (1998). Regulation of hypoxia- inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95, 7987–7992.

Imtiyaz, H.Z., Williams, E.P., Hickey, M.M., Patel, S.A., Durham, A.C., Yuan, L.J., Hammond, R., Gimotty, P.A., Keith, B., and Simon, M.C. (2010). Hypoxia-inducible factor 2a regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120, 2699–2714.

Incio, J., Liu, H., Suboj, P., Chin, S.M., Chen, I.X., Pinter, M., Ng, M.R., Nia, H.T., Grahovac, J., Kao, S., Babykutty, S., Huang, Y., Jung, K., Rahbari, N.N., Han, X., Chauhan, V.P., Martin, J.D., Kahn, J., Huang, P., Desphande, V., Michaelson, J., Michelakos, T.P., Ferrone, C.R., Soares, R., Boucher, Y., Fukumura, D., and Jain, R.K. (2016). Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6, 852–869.

Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468.

Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Targeting of HIFalpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472.

Jiang, H.L., Xu, C.X., Kim, Y.K., Arote, R., Jere, D., Lim, H.T., Cho, M.H., and Cho, C.S. (2009). The suppression of lung tumorigenesis by aerosol-delivered folate–chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials 30, 5844–5852.

Kaelin, W.G. Jr (2011). Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol 76, 335–345.

Kaelin, W.G., Jr. (2017). Common pitfalls in preclinical cancer target validation. Nat Rev Cancer 17, 425–440.

Kamura, T., Koepp, D.M., Conrad, M.N., Skowyra, D., Moreland, R.J., Iliopoulos, O., Lane, W.S., Kaelin Jr., W.G., Elledge, S.J., Conaway, R.C., Harper, J.W., and Conaway, J.W. (1999). Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661.

Karuppagounder, S.S., and Ratan, R.R. (2012). Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? J Cereb Blood Flow Metab 32, 1347–1361.

Keith, B., Johnson, R.S., and Simon M.C. (2011). HIF1a and HIF2a: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12, 9–22.

Keskin, D., Kim, J., Cooke, V.G., Wu, C.C., Sugimoto, H., Gu, C., De Palma, M., Kalluri, R., and LeBleu, V.S. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep 10, 1066–1081.

Kibel, A., Iliopoulos, O., Decaprio, J.A., and Kaelin Jr., W.G. (1995). Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446.

Kim, J., Evans, C., Weidemann, A., Takeda, N., Lee, Y.S., Stockmann, C., Branco-Price, C., Brandberg, F., Leone, G., Ostrowski, M.C., and Johnson, R.S. (2012). Loss of fibroblast HIF-1a accelerates tumorigenesis. Cancer Res 72, 3187–3195.

Kim, W.Y., Perera, S., Zhou, B., Carretero, J., Yeh, J.J., Heathcote, S.A., Jackson, A.L., Nikolinakos, P., Ospina, B., Naumov, G., Brandstetter, K.A., Weigman, V.J., Zaghlul, S., Hayes, D.N., Padera, R.F., Heymach, J.V., Kung, A.L., Sharpless, N.E., Kaelin Jr., W.G., and Wong, K.K. (2009). HIF2a cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest 119, 2160–2170.

Koay, E.J., Truty, M.J., Cristini, V., Thomas, R.M., Chen, R., Chatterjee, D., Kang, Y., Bhosale, P.R., Tamm, E.P., Crane, C.H., Javle, M., Katz, M.H., Gottumukkala, V.N., Rozner, M.A., Shen, H., Lee, J.E., Wang, H., Chen, Y., Plunkett, W., Abbruzzese, J.L., Wolff, R.A., Varadhachary, G.R., Ferrari, M., and Fleming, J.B. (2014). Transport properties of pancreatic cancer describe gemcitabine delivery and response. J Clin Invest 124, 1525–1536.

Kondo, K., Klco, J., Nakamura, E., Lechpammer, M., and Kaelin Jr., W.G. (2002). Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246.

Kotch, L.E., Iyer, N.V., Laughner, E., and Semenza, G.L. (1999). Defective vascularization of HIF-1a-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209, 254–267.

Kuchnio, A., Moens, S., Bruning, U., Kuchnio, K., Cruys, B., Thienpont, B., Broux, M., Ungureanu, A.A., Leite de Oliveira, R., Bruyère, F., Cuervo, H., Manderveld, A., Carton, A., Hernandez-Fernaud, J.R., Zanivan, S., Bartic, C., Foidart, J.M., Noel, A., Vinckier, S., Lambrechts, D., Dewerchin, M., Mazzone, M., and Carmeliet, P. (2015). The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep 12, 992–1005.

LaGory, E.L., Wu, C., Taniguchi, C.M., Ding, C.K.C., Chi, J.T., von Eyben, R., Scott, D.A., Richardson, A.D., and Giaccia, A.J. (2015). Suppression of PGC-1a is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep 12, 116–127.

Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzygme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16, 1466–1471.

Lee, J.H., Elly, C., Park, Y., and Liu, Y.C. (2015). E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1a to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074.

Lee, K.E., Spata, M., Bayne, L.J., Buza, E.L., Durham, A.C., Allman, D., Vonderheide, R.H., and Simon, M.C. (2016). Hif1a deletion reveals proneoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6, 256–269.

Liao, D., and Johnson, R.S. (2007). Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metast Rev 26, 281–290.

Lonergan, K.M., Iliopoulos, O., Ohh, M., Kamura, T., Conaway, R.C., Conaway, J.W., and Kaelin Jr., W.G. (1998). Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18, 732–741.

Lonser, R.R., Glenn, G.M., Walther, M.C., Chew, E.Y., Libutti, S.K., Linehan, W.M., and Oldfield, E.H. (2003). von Hippel-Lindau disease. Lancet 361, 2059–2067.

Mack, F.A., Rathmell, W.K., Arsham, A.M., Gnarra, J., Keith, B., and Simon, M.C. (2003). Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 3, 75–88.

Madsen, C.D., Pedersen, J.T., Venning, F.A., Singh, L.B., Moeendarbary, E., Charras, G., Cox, T.R., Sahai, E., and Erler, J.T. (2015). Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep 16, 1394–1408.

Maher, E.R., Yates, J.R.W., Harries, R., Benjamin, C., Harris, R., Moore, A.T., and Ferguson-Smith, M.A. (1990). Clinical features and natural history of von Hippel-Lindau disease. QJM 77, 1151–1163.

Mazumdar, J., Hickey, M.M., Pant, D.K., Durham, A.C., Sweet-Cordero, A., Vachani, A., Jacks, T., Chodosh, L.A., Kissil, J.L., Simon, M.C., and Keith, B. (2010). HIF-2a deletion promotes Kras-driven lung tumor development. Proc Natl Acad Sci USA 107, 14182–14187.

McNeill, L.A., Hewitson, K.S., Gleadle, J.M., Horsfall, L.E., Oldham, N.J., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., and Schofield, C.J. (2002). The use of dioxygen by HIF prolyl hydroxylase (PHD1). BioOrg Medicinal Chem Lett 12, 1547–1550.

Minamishima, Y.A., Moslehi, J., Bardeesy, N., Cullen, D., Bronson, R.T., and Kaelin, W.G. (2008). Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244.

Moding, E.J., Castle, K.D., Perez, B.A., Oh, P., Min, H.D., Norris, H., Ma, Y., Cardona, D.M., Lee, C.L., and Kirsch, D.G. (2015). Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med 7, 278ra234.

Moeller, B.J., Cao, Y., Li, C.Y., and Dewhirst, M.W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors. Cancer Cell 5, 429–441.

Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., Szweda, L.I., Xing, C., Hu, Z., Deberardinis, R.J., Schiattarella, G., Hill, J.A., Oz, O., Lu, Z., Zhang, C.C., Kimura, W., and Sadek, H.A. (2017). Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227.

Nakazawa, M.S., Eisinger-Mathason, T.S.K., Sadri, N., Ochocki, J.D., Gade, T.P.F., Amin, R.K., and Simon, M.C. (2016). Epigenetic re-expression of HIF-2a suppresses soft tissue sarcoma growth. Nat Commun 7, 10539.

Nath, B., and Szabo, G. (2012). Hypoxia and hypoxia inducible factors: Diverse roles in liver diseases. Hepatology 55, 622–633.

Neumann, H.P., Eggert, H.R., Scheremet, R., Schumacher, M., Mohadjer, M., Wakhloo, A.K., Volk, B., Hettmannsperger, U., Riegler, P., and Schollmeyer, P. (1992). Central nervous system lesions in von Hippel- Lindau syndrome. J Neurology Neurosurgery Psychiatry 55, 898–901.

Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., and Chouaib, S. (2014). PD-L1 is a novel direct target of HIF-1a, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781–790.

Olenchock, B.A., Moslehi, J., Baik, A.H., Davidson, S.M., Williams, J., Gibson, W.J., Chakraborty, A.A., Pierce, K.A., Miller, C.M., Hanse, E.A., Kelekar, A., Sullivan, L.B., Wagers, A.J., Clish, C.B., Van der Heiden, M.G., and Kaelin Jr., W.G. (2016). EGLN1 inhibition and rerouting of a-ketoglutarate suffice for remote ischemic protection. Cell 164, 884–895.

Olive, K.P., Jacobetz, M.A., Davidson, C.J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M.A., Caldwell, M.E., Allard, D., Frese, K.K., Denicola, G., Feig, C., Combs, C., Winter, S.P., Ireland-Zecchini, H., Reichelt, S., Howat, W.J., Chang, A., Dhara, M., Wang, L., Rückert, F., Grützmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S.R., Huang, P., Davies, S.E., Plunkett, W., Egorin, M., Hruban, R.H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., and Tuveson, D.A. (2009). Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461.

Patel, S.A., and Simon, M.C. (2008). Biology of hypoxia-inducible factor-2a in development and disease. Cell Death Differ 15, 628–634.

Pattabiraman, D.R., and Weinberg, R.A. (2014). Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Dis 13, 497–512.

Pause, A., Lee, S., Worrell, R.A., Chen, D.Y.T., Burgess, W.H., Linehan, W.M., and Klausner, R.D. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94, 2156–2161.

Pause, A., Peterson, B., Schaffar, G., Stearman, R., and Klausner, R.D. (1999). Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci USA 96, 9533–9538.

Pugh, C.W., and Ratcliffe, P.J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9, 677–684.

Rankin, E.B., Fuh, K.C., Castellini, L., Viswanathan, K., Finger, E.C., Diep, A.N., LaGory, E.L., Kariolis, M.S., Chan, A., Lindgren, D., Axelson, H., Miao, Y.R., Krieg, A.J., and Giaccia, A.J. (2014). Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA 111, 13373–13378.

Rankin, E.B., Wu, C., Khatri, R., Wilson, T.L.S., Andersen, R., Araldi, E., Rankin, A.L., Yuan, J., Kuo, C.J., Schipani, E., and Giaccia, A.J. (2012). The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149, 63–74.

Ratan, R.R., Siddiq, A., Aminova, L., Lange, P.S., Langley, B., Ayoub, I., Gensert, J.A., and Chavez, J. (2004). Translation of ischemic preconditioning to the patient: prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35, 2687–2689.

Ratan, R.R., Siddiq, A., Smirnova, N., Karpisheva, K., Haskew-Layton, R., McConoughey, S., Langley, B., Estevez, A., Huerta, P.T., Volpe, B., Roy, S., Sen, C.K., Gazaryan, I., Cho, S., Fink, M., and LaManna, J. (2007). Harnessing hypoxic adaptation to prevent, treat, and repair stroke. J Mol Med 85, 1331–1338.

Reischl, S., Li, L., Walkinshaw, G., Flippin, L.A., Marti, H.H., and Kunze, R. (2014). Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke. PLoS ONE 9, e84767.

Rhim, A.D., Oberstein, P.E., Thomas, D.H., Mirek, E.T., Palermo, C.F., Sastra, S.A., Dekleva, E.N., Saunders, T., Becerra, C.P., Tattersall, I.W., Westphalen, C.B., Kitajewski, J., Fernandez-Barrena, M.G., Fernandez-Zapico, M.E., Iacobuzio-Donahue, C., Olive, K.P., and Stanger, B.Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747.

Salceda, S., and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox- induced changes. J Biol Chem 272, 22642–22647.

Samanta, D., Gilkes, D.M., Chaturvedi, P., Xiang, L., and Semenza, G.L. (2014). Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA 111, E5429–E5438.

Sanchez, R., and Zhou, M.M. (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36, 364–372.

Schönhuber, N., Seidler, B., Schuck, K., Veltkamp, C., Schachtler, C., Zukowska, M., Eser, S., Feyerabend, T.B., Paul, M.C., Eser, P., Klein, S., Lowy, A.M., Banerjee, R., Yang, F., Lee, C.L., Moding, E.J., Kirsch, D.G., Scheideler, A., Alessi, D.R., Varela, I., Bradley, A., Kind, A., Schnieke, A.E., Rodewald, H.R., Rad, R., Schmid, R.M., Schneider, G., and Saur, D. (2014). A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20, 1340–1347.

Semenza, G.L. (2007). Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405, 1–9.

Semenza, G.L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634.

Semenza, G.L., Roth, P.H., Fang, H.M., and Wang, G.L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269, 23757–23767.

Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

Skuli, N., Liu, L., Runge, A., Wang, T., Yuan, L., Patel, S., Iruela-Arispe, L., Simon, M.C., and Keith, B. (2009). Endothelial deletion of hypoxiainducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114, 469–477.

Skuli, N., Majmundar, A.J., Krock, B.L., Mesquita, R.C., Mathew, L.K., Quinn, Z.L., Runge, A., Liu, L., Kim, M.N., Liang, J., Schenkel, S., Yodh, A.G., Keith, B., and Simon, M.C. (2012). Endothelial HIF-2a regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 122, 1427–1443.

Stiehl, D.P., Wirthner, R., Koditz, J., Spielmann, P., Camenisch, G., and Wenger, R.H. (2006). Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem 281, 23482–23491.

Synnestvedt, K., Furuta, G.T., Comerford, K.M., Louis, N., Karhausen, J., Eltzschig, H.K., Hansen, K.R., Thompson, L.F., and Colgan, S.P. (2002). Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110, 993–1002.

Takeda, K., Aguila, H.L., Parikh, N.S., Li, X., Lamothe, K., Duan, L.J., Takeda, H., Lee, F.S., and Fong, G.H. (2008). Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111, 3229–3235.

Tang, N., Wang, L., Esko, J., Giordano, F.J., Huang, Y., Gerber, H.P., Ferrara, N., and Johnson, R.S. (2004). Loss of HIF-1a in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485–495.

Taniguchi, C.M., Miao, Y.R., Diep, A.N., Wu, C., Rankin, E.B., Atwood, T.F., Xing, L., and Giaccia, A.J. (2014). PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci Transl Med 6, 236ra264.

Warfel, N.A., and El-Deiry, W.S. (2014). HIF-1 signaling in drug resistance to chemotherapy. CMC 21, 3021–3028.

Wei, K., Piecewicz, S.M., McGinnis, L.M., Taniguchi, C.M., Wiegand, S.J., Anderson, K., Chan, C.W.M., Mulligan, K.X., Kuo, D., Yuan, J., Vallon, M., Morton, L.C., Lefai, E., Simon, M.C., Maher, J.J., Mithieux, G., Rajas, F., Annes, J.P., McGuinness, O.P., Thurston, G., Giaccia, A.J., and Kuo, C.J. (2013). A liver Hif-2a–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19, 1331–1337.

Whiteside, T.L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912.

Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420.

Zhong, R., Xu, H., Chen, G., Zhao, G., Gao, Y., Liu, X., Ma, S., and Dong, L. (2015). The role of hypoxia-inducible factor-1a in radiation-induced autophagic cell death in breast cancer cells. Tumor Biol 36, 7077–7083.

Zhou, L., Liu, X.D., Sun, M., Zhang, X., German, P., Bai, S., Ding, Z., Tannir, N., Wood, C.G., Matin, S.F., Karam, J.A., Tamboli, P., Sircar, K., Rao, P., Rankin, E.B., Laird, D.A., Hoang, A.G., Walker, C.L., Giaccia, A.J., and Jonasch, E. (2016). Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35, 2687–2697.