Chemical Analysis of Volatiles Emitted by Pinus sylvestris After Induction by Insect Oviposition

Journal of Chemical Ecology - Tập 29 - Trang 1235-1252 - 2003
Roland Mumm1, Kai Schrank1, Robert Wegener2, Stefan Schulz2, Monika Hilker1
1Institute of Biology, Freie Universität Berlin, Berlin, Germany
2Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany

Tóm tắt

Gas chromatography – mass spectrometry analyses of the headspace volatiles of Scots pine (Pinus sylvestris) induced by egg deposition of the sawfly Diprion pini were conducted. The odor blend of systemically oviposition-induced pine twigs, attractive for the eulophid egg parasitoid Chrysonotomyia ruforum, was compared to volatiles released by damaged pine twigs (control) that are not attractive for the parasitoid. The mechanical damage inflicted to the control twigs mimicked the damage by a sawfly female prior to egg deposition. The odor blend released by oviposition-induced pine twigs consisted of numerous mono- and sesquiterpenes, which all were also present in the headspace of the artificially damaged control twigs. A quantitative comparison of the volatiles from oviposition-induced twigs and controls revealed that only the amounts of (E)-β-farnesene were significantly higher in the volatile blend of the oviposition-induced twigs. Volatiles from pine twigs treated with jasmonic acid (JA) also attract the egg parasitoid. No qualitative differences were detected when comparing the composition of the headspace of JA-treated pine twigs with the volatile blend of untreated control twigs. JA-treated pine twigs released significantly higher amounts of (E)-β-farnesene. However, the JA treatment induced a significant increase of the amount of further terpenoid components. The release of terpenoids by pine after wounding, egg deposition, and JA treatment is discussed with special respect to (E)-β-farnesene.

Tài liệu tham khảo

Adams, R. P. 1995. Identification of Essential Oil—Components by Gas Chromatography/Mass Spectroscopy. Allured, Carol Stream, Illinois. Aducci, P. 1997. Signal Transduction in Plants. Molecular and Cell Biology Updates. Birkhäuser, Basel, Switzerland. Agrawal, A. A., Tuzun, S., and Bent, E. 1999. Induced Plant Defenses Against Pathogens and Herbivores. Biochemistry, Ecology, and Agriculture. APS Press, St. Paul, Minnesota. Al Abassi, S., Birkett, M. A., Petterson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor mediated by paired olfactory cells. J. Chem. Ecol. 26:1765–1771. Baldwin, I. T. 1994. Chemical changes rapidly induced by folivory, pp. 1-23, in E. A. Bernays (ed.). Insect–Plant Interactions, Vol. 5. CRC Press, Boca Raton, Florida. Barnola, L. F., Hasegawa, M., and Cedono, A. 1994. Mono-and sesquiterpene variation in Pinus caribaea needles and its relationship to Atta laevigata herbivory. Biochem. Syst. Ecol. 22:437–445. Baser, K. H. C., Demirci, B., and Kirimer, N. 2002. Compositions of the essential oils of four Helichrysum species from Madagascar. J. Essent. Oil Res. 14:53–55. Beale, M. H. and Ward, J. L. 1998. Jasmonates: Key players in plant defence. Nat. Prod. Rep. 6:533–547. Bengtsson, M., Backman, A. C., Liblikas, I., Ramirez, M. I., Borg-Karlson, A. K., Ansebo, L., Anderson, P., Loefqvist, J., and Witzgall, P. 2001. Plant odor analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. J. Agric. Food Chem. 49:3731–3736. Bohlmann, J., Crock, J., Jetter, R., and Croteau, R. 1998. Terpenoid-based defences in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. USA. 5:6756–6761. Boland, W., Hopke, J., Donath, J., Nüske, J., and Bublitz, F. 1995. Jasmonic acid and coronatine induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34:1600–1602. Boland, W., Koch, T., Krumm, T., Piel, J., and Jux, A. 1999. Induced biosynthesis of insect semiochemicals in plants, pp. 110-126, in D. J. Chadwick and J. A. Goode (Eds.). Insect–Plant Interactions and Induced Plant Defence. Novartis Foundation Symposium 223. Wiley, Chicester, England. Bolter, C. J., Dicke, M., van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023. Bombosch, S. and Ramakers, P. M. J. 1976. Zur Dauerzucht von Gilpinia hercyniae Htg. Z. Pflanzenkrank. Pflanzenschutz 83:40–44. Borg-Karlson, A.-K., Lindström, M., Norin, T., Persson, M., and Valterová, I. 1993. Enantiomeric composition of monoterpene hydrocarbons in different tissues of Norway spruce, Picea abies (L.) Karst. A multi-dimensional gas chromatography study. Acta Chem. Scand. 47:138–144. Chen, Z., Kolb, T. E., and Clancy, K. M. 2002. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation. J. Chem. Ecol. 28:897–920. Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573. Dicke, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant–carnivore mutualism. J. Plant Physiol. 143:465–472. Dicke, M. 1999. Evolution of induced indirect defence of plants, pp. 62-88, in R. Tollrian and C. D. Harvell (Eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey. Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922. Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator–prey interactions. J. Chem. Ecol. 16:381–396. Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249. Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483-520, in H., Olff, V. K., Brown, and R. H. Drent (Eds.). Herbivores Between Plants and Predators. Blackwell Science, Oxford. Du, Y., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1369. Duffey, S. S. and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37. Edwards, P. J. and Wratten, S. D. 1987. Ecological significance of wound induced changes in plant chemistry, pp. 213-219, in V., Labeyrie, G., Fabres, and D. Lachaise (Eds.). Insects–Plants: Proceedings of 6th International Symposium on Insect–Plant Relationships. Dr. W. Junk, The Hague. Eichhorn, O. 1976. Dauerzucht von Diprion pini L. (Hym.: Diprionidae) im Laboratorium unter Berücksichtigung der Fotoperiode. Anz. Schädlingskde. Pflanzenschutz Umweltschutz 49:38–41. Fäldt, J., Martin, D., Miller, B., Rawat, S., and Bohlmann, J. 2003. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119–133. Fäldt, J., Sjödin, K., Persson, M., Valterova, I., and Borg-Karlson, A. K. 2001. Correlations between selected monoterpene hydrocarbons in the xylem of six Pinus (Pinaceae) species. Chemoecology 11:97–106. Franceschi, V. R., Krekling, T., and Chrisitansen, E. 2002. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 89:578-586 Fugmann, B., Lang-Fugmann, S., and Steglich, W. 1997. Römpp-Lexikon Naturstoffe. Georg Thieme, Stuttgart, Germany. Gershenzon, J. and Croteau, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. R. Berenbaum (Eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 1. The Chemical Participants, Academic Press, New York. Gijzen, M., Lewinsohn, E., Savage, T. J., and Croteau, R. B. 1993. Conifer Monoterpenes, pp. 8-22, in R., Teranishi, R. G., Buttery, and H. Sugisawa (Eds.). Bioactive Volatile Compounds from Plants. ACS Symposium Series 525, Washington, DC. Gols, R., Posthumus, M. A., and Dicke, M. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93:77–86. Hilker, M., Kobs, C., Varama, M., and Schrank, K., 2002a. Insect egg deposition induces Pinus to attract egg parasitoids. J. Exp. Biol. 205:455–461. Hilker, M., Rohfritsch, O., and Meiners, T., 2002b. The plant's response towards insect egg deposition, pp. 205-234, in M. Hilker and T. Meiners (Eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin. Hilker, M. and Meiners, T. 2002. Induction of plant responses towards oviposition and feeding of herbivorous arthropods: A comparison. Entomol. Exp. Appl. 104:181–192. Honkanen, T., Haukioja, E., and Kitunen, V. 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13:126–140. Hopke, J., Donath, J., Blechert, S., and Boland, W. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352:146–150. Joulain, D. and König, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.-B. Verlag, Hamburg, Germany. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University Press of Chicago, Chicago, Illinois. Kaukinen, K. H., Tranbarger, T. J., and Misra, S. 1996. Post germination induced and hormonally dependent expression of low molecular weight heat shock protein genes in Douglas fir. Plant Mol. Biol. 30:1115–1128. Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328. Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol. 121:153–162. König, W. A., Krüger, A., Icheln, D., and Runge, T. 1992. Enantiomeric composition of the chiral constituents in essential oils. J. High Resol. Chromatogr. 15:184–189. Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280. Latta, R. G., Linhart, Y. B., Lundquist, L., and Snyder, M. A. 2000. Patterns of monoterpene variation within individual trees in ponderosa pine. J. Chem. Ecol. 26:1341–1357. Litvak, M. E. and Monson, R. K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540. Lombardero, M. J., Ayres, M. P., Lorio, P. L., Jr., and Ruel, J. J. 2000. Environmental effects on constitutive and inducible resin defences in Pinus taeda. Ecol. Lett. 3:329–339. Manninen, A. M., Tarhanen, S., Vuorinen, M., and Kainulainen, P. 2002. Comparing the variation of needle and wood terpenoids in scots pine provenances. J. Chem. Ecol. 28:211–228. Martin, D., Tholl, D., Gershenzon, J., and bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resins biosynthesis, and terpenoid accumulation in developing xylem of Norway Spruce stems. Plant Physiol. 129:1003–1018. McAuslane, H. J. and Alborn, H. T. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416. Meiners, T. and Hilker, M. 1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaluruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93. Meiners, T. and Hilker, M. 2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26:221–232. Micha, S. G. and Wyss, U. 1996. Aphid alarm pheromone (E)-β-farnesene: A host findung kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiinae). Chemoecology 7:132–139. Moore, G. E. and Clark, E. W. 1968. Suppressing microorganisms and maintaining turgidity in coniferous foliage used to rear insects in the laboratory. J. Econ. Entomol. 61:1030–1031. Nault, L. R., Edwards, L. J., and Styer, W. E. 1973. Aphid alarm pheromones: Secretion and reception. Environ. Entomol. 2:101–105. Nebeker, T. E., Schmitz, R. F., and Tisdale, R. A. 1995. Comparison of oleoresin flow in relation to wound size, growth rates, and disease status of lodgepole pine. Can. J. Bot. 73:370–375. Oven, P. and Torelli, N. 1999. Response of the cambial zone in conifers to wounding. Phyton 39:133–137. Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000. Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398. Paré, P. W., Lewis, W. J., and Tumlinson, J. H. 1999. Induced plant volatiles: Biochemistry and effects on parasitoids, pp. 167-180, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogenes and Herbivores. APS Press, St. Paul, Minnesota. Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167. Petrakis, P. V., Tsitsimpikou, C., Tzakou, O., Couladis, M., Vagias, C., and Roussis, V. 2001. Needle volatiles from Pinus species growing in Greece. Flavour Fragr. J. 16:249–252. Phillips, M. A., Savage, T. J., and Croteau, R. 1999. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372:197–204. Popp, M. P., Johnson, J. D., and Lesney, M. S. 1995. Characterization of the induced response of slash pine to inoculation with bark beetle vectored fungus. Tree Physiol. 15:619–623. Price, P. W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels, pp. 11-30, in D. J. Boethel and R. D. Eikenbary (Eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Hoerwood, Chichester, England. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65. Raffa, K. F. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–fungal complexes. Oecologia 102:285–295. Richard, S., Drevet, C., Jouanin, L., and Sequin, A. 1999. Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Gene 240:379–388. Richard, S., Lapointe, G., Rutledge, R. G., and Seguin, A. 2000. Induction of chalcone synthase in white spruce by wounding and jasmonate. Plant Cell Physiol. 41:982–987. Rodriguez-Saona, C., Crafts-Brandner, S. J., Paré, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695. Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319. Sadof, C. S. and Grant, G. G. 1997. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. J. Chem. Ecol. 23:1917–1927. Schmelz, E. A., Alborn, H. T., and Tumlinson, J. H. 2001. The influence of intact-plant and excised-leaf bioassay designs on volicitin-and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179. Sembdner, G. and Parthier, B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589. Sjödin, K., Persson, M., Borg-Karlson, A.-K., and Norin, T. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 41:439–445. Staswick, P. E. and Lehman, C. C. 1999. Jasmonic acid-signaled responses in plants, pp. 117-136, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota. Steele, C. L., Katoh, S., Bohlmann, J., and Croteau, R. 1998. Regulation of oleoresinosis in grand fir (Abies grandis). Plant Physiol. 116:1497–1504. Stout, M. J. and Bostock R. M. 1999. Specificity of induced responses to arthropods and pathogens, pp. 183-211, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant–mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354. Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287. Teuscher, E. and Lindequist, U. 1994. Biogene Gifte. Gustav Fischer, Stuttgart, Germany. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688. Tomlin, E. S., Alfaro, R. I., Borden, J. H., and He, F. 1998. Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol. 18:21–28. Trapp, S. and Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:689–724. Turlings, T. C. J., McCall, P. J., Alborn, H. T., and Tumlinson, J. H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425. Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253. van den Dool, J. and Kratz, P. D. 1963. A generalization of the retention index system including linear programmed gas–liquid partition chromatography. J. Chromatogr. 11:463. van Dort, H. M., Jagers, P. P., ter Heide, R., and van der Weerdt, A. J. A. 1993. Narcissus trevithian and Narcissus geranium: Analysis and synthesis of compounds. J. Agric. Food Chem. 41:2063–2075. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216. Watt, A. D., Leather, S. R., and Forrest, G. I. 1991. The effect of previous defoliation of pole-stage lodgepole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Oecologia 86:31–35. Wegener, R., Schulz, S., Meiners, T., Hadwich, K., and Hilker, M. 2001. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J. Chem. Ecol. 27:499–515. Weissbecker, B., van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445. Zhu, J., Cossé, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea, to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.