Biochemical Effects of Fluoride on Oral Bacteria

SAGE Publications - Tập 69 Số 2_suppl - Trang 660-667 - 1990
Ian R. Hamilton1
1Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB Canada R3E OW2

Tóm tắt

Fluoride inhibition of carbohydrate metabolism by the acidogenic plaque microflora is well-established, although it has not always been appreciated that oral bacteria vary considerably in their susceptibility to fluoride. Early studies demonstrated that the F-induced reduction in acid production was due, in part, to the inhibition of the glycolytic enzyme, enolase, which converts 2–P-gfycerate to P-enolpyruvate. The decreased output of PEP in the presence of F, in turn, results in the inhibition of sugar transport via the PEP phosphotransferase system (PTS). Bacterial accumulation of fluoride involves the transport of HF, a process requiring a transmembrane pH difference or pH gradient, which is generated only by metabolically active cells. The uptake of HF into the more alkaline cytoplasm results in the dissociation of HF to H+ and F- and, if allowed to continue, the accumulation of protons acidifies the cytoplasm, causing a reduction in both the proton gradient and enzyme activity. Current information indicates that in addition to enolase, F- also inhibits the membrane-bound, proton-pumping H+/ATPase, which is involved in the generation of proton gradients through the efflux of protons from the cell at the expense of ATP. Thus, fluoride has the dual action of dissipating proton gradients and preventing their generation through its action on H*/ATPase. The collapse of transmembrane proton gradient, in turn, reduces the ability of cells to transport solutes via mechanisms involving proton motive force. In spite of these known effects on the bacterial cell, there is no general agreement that the anti-microbial effects of F contribute to the Anticaries effect of fluoride. The resolution of this question will require new information on the nature and concentration of F in plaque, the minimal level of F required to provide an Anticaries effect, and the influence of cellular integrity and activity on F uptake and accumulation by plaque bacteria.

Từ khóa


Tài liệu tham khảo

10.1111/j.1600-0528.1976.tb00986.x

10.1016/0003-9969(80)90063-1

BEAZLEY V.C.C., 1980, Scand J Dent Res, 88, 193

10.1128/IAI.53.2.331-338.1986

10.1177/00220345400190040601

10.1159/000260190

10.1159/000259744

BOREI H., 1945, Ark Kemi Miner Geol, 20, 1

10.1007/978-1-4615-8279-3_4

10.1128/iai.36.1.247-254.1982

10.1177/00220345740530031701

BROWN L.R., 1976, Microbial Aspects of Dental Caries, 275

10.1177/00220345830620061201

10.1159/000259632

10.1016/0003-9969(69)90140-X

10.1159/000260430

DAWES C., 1965, Br Dent J, 119, 164

EDGAR W.M., 1981, The Environment of the Teeth, 19

10.1016/0003-9969(81)90024-8

10.1038/sj.bdj.4802436

10.1016/0003-9969(80)90089-8

10.1177/00220345800590072801

10.1016/0003-9969(82)90061-9

10.1016/0003-9969(82)90027-9

GEDDES D.A.M., 1988, Fluoride in Dentistry, 60

10.1128/iai.34.3.871-879.1981

10.1128/iai.51.1.119-124.1986

GUGGENHEIM B., 1970, Int Dent J, 20, 657

10.1128/MMBR.44.2.331-384.1980

10.1139/m69-181

10.1139/m69-182

HAMILTON I.R., 1976, Microbial Aspects of Dental Caries, 683

10.1159/000260304

HAMILTON I.R., 1986, Molecular Microbiology and Immunobiology of Streptococcus mutans, 145

HAMILTON I.R., 1987, Sugar Transport and Metabolism by Gram-positive Bacteria, 94

HAMILTON I.R., 1988, Fluoride in Dentistry, 77

10.1128/iai.48.3.664-670.1985

10.1128/iai.19.2.434-442.1978

10.1016/B978-0-12-152506-4.50010-8

10.1016/B978-0-12-395623-1.50020-4

JENKINS G.N., 1980, Borderland Between Caries and Periodontal Disease II, 269

10.1016/0003-9969(69)90025-9

10.1159/000260302

10.1016/S0003-9861(71)80053-X

10.1016/0003-9861(71)90366-3

10.1016/0003-9969(78)90255-8

10.1128/iai.48.1.19-22.1985

10.1177/00220345850640110701

10.1016/0003-9969(76)90103-5

10.1159/000260283

10.1016/0003-9969(81)90058-3

10.1007/BF00402337

10.1159/000260423

KOBAYASHI H., 1987, Sugar Transport and Metabolism by Gram-positive Bacteria, 255

KONINGS W.N., 1987, Sugar Transport and Metabolism by Gram-positive Bacteria, 270

10.1128/AAC.12.3.339

10.1159/000259852

10.1159/000260153

LOHMANN K., 1934, Biochem Z, 273, 60

10.1159/000260461

10.1016/0003-9969(75)90047-3

10.1177/00220345820610062701

10.1177/00220345770560063301

10.1177/00220345850640021501

MICHELS P.A.M., 1979, FEMS Utters, 5, 357

10.1177/00220345850640030101

10.1111/j.1469-185X.1966.tb01501.x

10.1016/S0003-9969(87)80004-3

10.1016/0304-4157(81)90004-6

10.1128/mr.51.4.498-508.1987

10.1128/mr.49.3.232-269.1985

10.1016/0003-9969(81)90072-8

SAIER M.H., 1986, Mechanisms and Regulation of Carbohydrate Transport in Bacteria

10.1016/0003-9969(69)90185-X

10.1159/000260304

10.1177/00220345730520060801

10.1016/0003-9969(74)90096-X

10.1177/00220345780570092101

10.1042/bj0311516

10.1128/iai.55.11.2597-2603.1987

TATEVOSSIAN A., 1980, Proc Finn Dent Soc, 76, 103

10.1177/00220345850640100601

10.1177/0022034581060003S1001

10.1128/iai.45.2.356-359.1984

10.1177/00220345870660111101

10.1007/BF01626558

10.1111/j.1749-6632.1965.tb34849.x

10.1128/iai.18.3.680-687.1977

10.1159/000260699

10.1128/iai.41.1.375-382.1983