Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility
Tóm tắt
Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors) or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4) of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor for glutamate was tested in migraineurs with and without aura (MA and MO) and healthy controls. Two variants in the regulative regions of GRIA1 (rs2195450) and GRIA3 (rs3761555) genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively), but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. This study represents the first genetic evidence of a link between glutamate receptors and migraine.
Tài liệu tham khảo
Kors EE, van den Maagdenberg AM, Plomp JJ, Frants RR, Ferrari MD: Calcium channel mutations and migraine. Curr Opin Neurol. 2002, 15 (3): 311-316. 10.1097/00019052-200206000-00014.
De Fusco M, Marconi R, Silvestri L, et al: Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003, 33 (2): 192-196. 10.1038/ng1081.
Dichgans M, Freilinger T, Eckstein G, et al: Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet. 2005, 366 (9483): 371-374. 10.1016/S0140-6736(05)66786-4.
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM: Molecular genetics of migraine. Hum Genet. 2009, DOI 10.1007/s00439-009-0684-z
Colson NJ, Fernandez F, Lea RA, Griffiths LR: The search for migraine genes: an overview of current knowledge. Cell Mol Life Sci. 2007, 64: 331-344. 10.1007/s00018-006-5592-y.
Bergerot A, Holland PR, Akerman S, et al: Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006, 24 (6): 1517-34. 10.1111/j.1460-9568.2006.05036.x.
Tottene A, Conti R, Fabbro A, et al: Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron. 2009, 61: 762-773. 10.1016/j.neuron.2009.01.027.
Ramadan NM: The link between glutamate and migraine. CNS Spectr. 2003, 8: 446-449.
Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-10.1093/nar/16.3.1215.
Headache Classification Committee of the International Headache Society: The International Classification of Headache Disorders, 2nd Edition. Cephalalgia. 2004, 24 (Supplement 1): 1-52.
Gabriel SB, Schaffner SF, Nguyen H, et al: The structure of haplotype blocks in the human genome. Science. 2002, 296 (5576): 2225-9. 10.1126/science.1069424.
Nyholt DR, Curtain RP, Griffiths LR: Familial typical migraine: significant linkage and localization of a gene to Xq24-28. Hum Genet. 2000, 107: 18-23. 10.1007/s004390050004.
Fernandez F, Esposito T, Lea RA, Colson NJ, Ciccodicola A, Gianfrancesco F, Griffiths LR: Investigation of GABA A Receptors Genes and Migraine Susceptibility. BMC Medical Genetics. 2008, 16: 9-109.
Purcell S, Cherny SS, Sham PC: Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003, 19: 149-150. 10.1093/bioinformatics/19.1.149.
Granelli-Piperno A, Nolan P, Inaba K, Steinman RM: The effect of immunosuppressive agents on the induction of nuclear factors that bind to sites on the interleukin 2 promoter. J Exp Med. 1990, 172: 1869-1872. 10.1084/jem.172.6.1869.
Heinemeyer T, Wingender E, Reuter I, et al: Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998, 26: 362-367. 10.1093/nar/26.1.362.
Vikelis M, Mitsikostas DD: The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets. 2007, 6: 251-7. 10.2174/187152707781387279.
Nyholt DR, Gillespie NG, Heath AC, Merikangas KR, Duffy DL, Martin NG: Latent class and genetic analysis does not support migraine with aura and migraine without aura as separate entities. Genet Epidemiol. 2004, 26: 231-244. 10.1002/gepi.10311.
Dehbandi S, Speckmann EJ, Pape HC, Gorji A: Cortical spreading depression modulates synaptic transmission of the rat lateral amygdala. Eur J Neurosci. 2008, 27 (8): 2057-65. 10.1111/j.1460-9568.2008.06188.x.
Andreou AP, Goadsby PJ: Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs. 2009.
Wittke-Thompson JK, Pluzhnikov A, Cox NJ: Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet. 2005, 76: 967-986. 10.1086/430507.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/11/103/prepub