Rejuvenated bouncing of non-Newtonian droplet via nanoparticle enwrapping

Applied Physics Letters - Tập 105 Số 23 - 2014
Duyang Zang1,2, Wenxia Zhang1,2, Jiayin Song1,2, Zhen Chen1,2, Yongjian Zhang3,4, Xingguo Geng1,2, Fang Chen1,2
12State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2Northwestern Polytechnical University 1 Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, , Xi'an 710129, China
31Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710129, China
4Northwestern Polytechnical University 2 State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, , Xi'an 710072, China

Tóm tắt

We have studied the impact dynamics of non-Newtonian droplets containing poly-(ethylene oxide) (PEO) by using a high speed camera. To get a deeper insight into the droplet-substrate interaction on droplet impact behavior, both the bare droplet and the liquid marbles have been investigated. The usually observed anti-rebound phenomenon caused by the PEO additives can be rejuvenated by enwrapment of droplets with nanoparticles. The presence of PEO in bare droplets greatly enhances the contact line friction and leads to irreversible impalement of the surface structure. Whereas for liquid marbles, the nanoparticle shell on the droplet surface inhibits the impalement. Our results clearly demonstrate that it is the droplet-substrate friction rather than the bulk rheological properties of the liquid that plays the essential role in the anti-rebound effect.

Từ khóa


Tài liệu tham khảo

2000, Int. J. Heat Mass Transfer, 43, 2841, 10.1016/S0017-9310(99)00350-6

2004, Adv. Mater, 16, 203, 10.1002/adma.200300385

1991, J. Pestic. Sci., 33, 411, 10.1002/ps.2780330403

2011, AIP Conf. Proc., 1376, 451, 10.1063/1.3651944

2011, Curr. Opin. Colloid Interface Sci., 16, 292, 10.1016/j.cocis.2011.06.009

2010, Phys. Rev. Lett., 104, 034504, 10.1103/PhysRevLett.104.034504

2009, Langmuir, 25, 6772, 10.1021/la9002862

2007, Appl. Phys. Lett., 91, 023105, 10.1063/1.2756296

2000, Nature, 405, 772, 10.1038/35015525

2007, Phys. Rev. Lett., 99, 174502, 10.1103/PhysRevLett.99.174502

2010, Phys. Rev. Lett., 104, 154502, 10.1103/PhysRevLett.104.154502

2004, Exp. Fluids, 37, 653, 10.1007/s00348-004-0852-9

2001, Nature, 411, 924, 10.1038/35082026

2012, Soft Matter, 8, 11018, 10.1039/c2sm26189h

2014, Soft Matter, 10, 1309, 10.1039/c3sm51885j

2013, Eur. Phys. J. E: Soft Matter Biol. Phys., 36, 59, 10.1140/epje/i2013-13059-2

2002, Nature, 417, 811, 10.1038/417811a

2014, Nat. Phys., 10, 515, 10.1038/nphys2980

2013, Soft Matter, 9, 394, 10.1039/c2sm26759d

2006, Europhys. Lett., 74, 299, 10.1209/epl/i2005-10522-3

2008, Europhys. Lett., 83, 64002, 10.1209/0295-5075/83/64002

2006, J. Colloid Interface Sci., 299, 1, 10.1016/j.jcis.2006.03.051

2007, Langmuir, 23, 4695, 10.1021/la062884r

2010, Eur. Phys. J. E: Soft Matter Biol. Phys., 31, 125, 10.1140/epje/i2010-10565-7

2012, Colloids Surf., A, 395, 262, 10.1016/j.colsurfa.2011.12.047