Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence

Springer Science and Business Media LLC - Tập 11 - Trang 1-32 - 2014
Stephen B Hladky1, Margery A Barrand1
1Department of Pharmacology, University of Cambridge, Cambridge, UK

Tóm tắt

Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.

Tài liệu tham khảo

Woollam DHM, Millen JW: Perivascular spaces of the mammalian central nervous system. Biol Rev Camb Philos Soc. 1954, 29: 251-283. 10.1111/j.1469-185X.1954.tb00597.x. Millen J, Woollam D: The Anatomy of the Cerebrospinal Fluid. 1962, Oxford University Press, London Hayman LA, Weathers SW, Kirkpatrick JB: Atlas of cerebrospinal fluid spaces. Clinical Brain Imaging: Normal Structure and Functional Anatomy. Edited by: Hayman LA, Hinck VC. 1992, Mosby-Year Book, St. Louis, 306-328. Cserr HF: Physiology of choroid plexus. Physiol Rev. 1971, 51: 273-311. Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332. Bradbury MWB: The Concept of a Blood-Brain Barrier. 1979, Wiley, Chichester Cserr HF, Patlak CS: Regulation of brain volume under isosmotic and anisosmotic conditions. Advances in Comparative and Environmental Physiology. Edited by: Gilles R, Hoffmann EK, Bolis L. 1991, Springer, Heidelberg, 61-80. Cserr HF, Patlak CS: Secretion and bulk flow of interstitial fluid. Physiology and Pharmacology of the Blood-Brain Barrier. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 245-261. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol 103] Davson H, Segal MB: Physiology of the CSF and Blood-brain Barriers. 1996, CRC Press, Boca Raton Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5 (10): 1-32. Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM: Barriers in the brain: a renaissance?. Trends Neurosci. 2008, 31: 279-286. 10.1016/j.tins.2008.03.003. Liddelow SA: Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS. 2011, 8: 2-10.1186/2045-8118-8-2. Abbott NJ: Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0. Damkier HH, Brown PD, Praetorius J: Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013, 93: 1847-1892. 10.1152/physrev.00004.2013. Pollay M: The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010, 7: 9-10.1186/1743-8454-7-9. Brinker T, Stopa EG, Morrison J, Klinge PM: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014, 11: 10-10.1186/2045-8118-11-10. O’Donnell ME: Ion and water transport across the blood-brain barrier. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 585-606. Strazielle N, Ghersi-Egea JF: Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013, 10: 1473-1491. 10.1021/mp300518e. Engelhardt B, Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009, 31: 497-511. 10.1007/s00281-009-0177-0. Luissint A-C, Artus C, Glacial F, Ganeshamoorthy K, Couraud P-O: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012, 9: 23-10.1186/2045-8118-9-23. Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200. Zhang ET, Inman CBE, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123. Mokri B: The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001, 56: 1746-1748. 10.1212/WNL.56.12.1746. Lehtinen MK, Bjornsson CS, Dymecki SM, Gilbertson RJ, Holtzman DM, Monuki ES: The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci. 2013, 33: 17553-17559. 10.1523/JNEUROSCI.3258-13.2013. Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985, 65: 101-148. Jones HC, Keep RF: The control of potassium concentration in the cerebrospinal-fluid and brain interstitial fluid of developing rats. J Physiol. 1987, 383: 441-453. Bito LZ, Davson H: Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp Neurol. 1966, 14: 264-280. 10.1016/0014-4886(66)90114-2. Bradbury MW, Davson H: The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965, 181: 151-174. 10.1113/jphysiol.1965.sp007752. Oldendorf WH: The blood-brain barrier. Exp Eye Res. 1977, 25 (Suppl): 177-190. Merritt HH, Fremont-Smith F: The Cerebrospinal Fluid. 1937, WB Saunders Co, Philadelphia, London Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969, 40: 648-677. 10.1083/jcb.40.3.648. Brightman MW: Physiology and Pharmacology of the Blood-Brain Barrier. Ultrastructure of Brain Endothelium. Edited by: Bradbury MWB. 1992, Springer-Verlag, Berlin, 1-22. [Born GVR, Cuatrecasas P, Herken H (Series Editor): Handbook of Experimental Pharmacology, Vol. 103] Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967, 34: 207-217. 10.1083/jcb.34.1.207. Oldendorf WH, Cornford ME, Brown WJ: Large apparent work capability of blood-brain-barrier - study of mitochondrial content of capillary endothelial cells in brain and other tissues of rat. Ann Neurol. 1977, 1: 409-417. 10.1002/ana.410010502. Nabeshima S, Reese TS, Landis DM, Brightman MW: Junctions in the meninges and marginal glia. J Comp Neurol. 1975, 164: 127-169. 10.1002/cne.901640202. Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160. Rall DP: Transport through the ependymal linings. Progress in Brain Research. Edited by: Lajtha A, Ford DH. 1968, Elsevier, Amsterdam, 159-172. Curran RE, Mosher MB, Owens ES, Fenstermacher JD: Cerebrospinal fluid production rates determined by simultaneous albumin and inulin perfusion. Exp Neurol. 1970, 29: 546-553. 10.1016/0014-4886(70)90079-8. Saunders NR, Knott GW, Dziegielewska KM: Barriers in the immature brain. Cell Mol Neurobiol. 2000, 20: 29-40. 10.1023/A:1006991809927. Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013, 10: 1492-1504. 10.1021/mp300495e. Fettiplace R, Haydon DA: Water permeability of lipid membranes. Physiol Rev. 1980, 60: 510-550. Guyton AC, Granger HJ, Taylor AE: Interstitial fluid pressure. Physiol Rev. 1971, 51: 527-563. Granger HJ, Laine GA, Barnes GE, Lewis RE: Dynamics and control of transmicrovascular fluid exchange. Edema. Edited by: Staub NC, Taylor AE. 1984, Raven, New York, 189-228. Levick JR: Flow through interstitium and other fibrous matrices. Q J Exp Physiol. 1987, 72: 409-437. 10.1113/expphysiol.1987.sp003085. Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007. Staverman AJ: The theory of measurement of osmotic pressure. Recl Trav Chim Pays Bas. 1951, 70: 344-352. Kedem O, Katchalsky A: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958, 27: 229-246. Michel CC: Fluid movement through capillary walls. Handbook of Physiology Section 2 The Cardiovascular System Volume 4 Part 1 Microcirculation. Edited by: Renkin EM, Michel CC, Geiger SR. 1984, American Physiological Society, Bethesda, MD, 375-409. Staverman AJ: Non-equilibrium thermodyanamics of membrane processes. Trans Faraday Soc. 1952, 48: 176-185. Starling EH: On the absorption of fluids from the connective tissue spaces. J Physiol. 1896, 19: 312-326. 10.1113/jphysiol.1896.sp000596. Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. Handbook of Physiology, Section 2, Circulation. Edited by: Hamilton WF. 1963, American Physiological Society, Washington, D.C, 961-1034. Levick JR, Michel CC: Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010, 87: 198-210. 10.1093/cvr/cvq062. Pappenheimer JR: Osmotic reflection coefficients in capillary membrane. Capillary Permeability: the Transfer of Molecules and Ions between Capillary Blood and Tissue. Edited by: Crone C, Lassen NA. 1970, Munksgaard, Academic, Copenhagen, New York, 278-286. Dl Y, Alvarez OA: Water sodium and thiourea transcapillary diffusion in dog heart. Am J Physiol. 1967, 213: 308-314. Wolf MB, Watson PD: Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs. Am J Physiol. 1989, 256: H282-H290. Hill A: Osmosis. Q Rev Biophys. 1979, 12: 67-99. 10.1017/S0033583500002602. Kim KS, Davis IS, Macpherson PA, Pedley TJ, Hill AE: Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport. Proc R Soc Lond A Math Phys Sci. 2005, 461: 273-296. 10.1098/rspa.2004.1374. Bulat M, Klarica M: Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure?. Periodicum Biologorum. 2005, 107: 147-152. Loo DDF, Wright EM, Zeuthen T: Water pumps. J Physiol. 2002, 542: 53-60. 10.1113/jphysiol.2002.018713. MacAulay N, Hamann S, Zeuthen T: Water transport in the brain: role of cotransporters. Neuroscience. 2004, 129: 1031-1044. Pappenheimer JR, Soto-Rivera A: Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol. 1948, 152: 471-491. Flexner LB, Cowie DB, Vosburgh GJ: Studies on capillary permeability with tracer substances. Cold Spring Harb Symp Quant Biol. 1948, 13: 88-98. 10.1101/SQB.1948.013.01.015. Pappenheimer JR: Passage of molecules through capillary walls. Physiol Rev. 1953, 33: 387-423. Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32 (Suppl 1): 43-50. Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002. Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006. Oreskovic D, Klarica M: Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol. 2011, 94: 238-258. 10.1016/j.pneurobio.2011.05.005. Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4. Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: “Compensated hyperosmolarity” of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248: 278-289. Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002. Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: O-17 JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25: 39-43. Fenstermacher JD, Johnson JA: Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol. 1966, 211: 341-346. Fenstermacher JD, Patlak CS: The movements of water and solutes in the brains of mammals. Dynamics of Cerebral Edema. Edited by: Pappius HM, Feindel W. 1976, Springer-Verlag, Berlin, 87-94. Paulson OB, Hertz MM, Bolwig TG, Lassen NA: Filtration and diffusion of water across blood-brain-barrier in man. Microvasc Res. 1977, 13: 113-123. 10.1016/0026-2862(77)90120-0. Sweet WH, Selverstone B, Soloway S, Stetten D: Studies of formation, flow and absorption of cerebrospinal fluid. II. Studies with heavy water in the normal man. Surg Forum. 1950, 92: 376-381. Sweet WH, Brownell GL, Scholl JA, Bowsher DR, Benda P, Stickley EE: The formation, flow and absorption of cerebrospinal fluid - newer concepts based on studies with isotopes. Res Publ Assoc Res Nerv Ment Dis. 1954, 34: 101-159. Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275. Borison HL, Borison R, McCarthy LE: Brain stem penetration by horseradish peroxidase from the cerebrospinal fluid spaces in the cat. Exp Neurol. 1980, 69: 271-289. 10.1016/0014-4886(80)90211-3. Greitz D: Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004, 27: 145-165. discussion 166-167 Greitz D: Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Child’s Nerv Syst. 2007, 23: 487-489. 10.1007/s00381-007-0303-z. Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn RD: A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol. 2009, 59: 729-759. 10.1007/s00285-009-0250-2. Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926. Bateman GA, Napier BD: External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Child’s Nerv Syst. 2011, 27: 2087-2096. 10.1007/s00381-011-1549-z. Davson H: Dynamic aspects of cerebrospinal fluid. Dev Med Child Neurol Suppl. 1972, 27: 1-16. McComb JG: Recent research into the nature of cerebrospinal-fluid formation and absorption. 8. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369. Kimelberg HK: Water homeostasis in the brain: basic concepts. Neuroscience. 2004, 129: 851-860. 10.1016/j.neuroscience.2004.07.033. Bradbury MW, Cserr HF: Drainage of cerebrospinal fluid and brain interstitial fluid into cervical lymphatics. Experimental Biology of the Lymphatic Circulation. Edited by: Johnston MG. 1985, Elsevier, Amsterdam, Oxford, 355-394. [Research Monographs in Cell and Tissue Physiology, Vol 9] Gjedde A, Diemer NH: Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. J Cereb Blood Flow Metab. 1985, 5: 282-289. 10.1038/jcbfm.1985.36. Klein B, Kuschinsky W, Schrock H, Vetterlein F: Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol. 1986, 251: H1333-H1340. Gross PM, Sposito NM, Pettersen SE, Panton DG, Fenstermacher JD: Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus. J Cereb Blood Flow Metab. 1987, 7: 154-160. 10.1038/jcbfm.1987.38. Schlageter KE, Molnar P, Lapin GD, Groothuis DR: Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999, 58: 312-328. 10.1006/mvre.1999.2188. Rosenberg GA, Kyner WT, Estrada E: Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980, 238: F42-F49. Fenstermacher J, Kaye T: Drug diffusion within the brain. Ann N Y Acad Sci. 1988, 531: 29-39. 10.1111/j.1749-6632.1988.tb31809.x. Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21: 207-215. 10.1016/S0166-2236(98)01261-2. Verkman AS: Diffusion in the extracellular space in brain and tumors. Phys Biol. 2013, 10: 045003-10.1088/1478-3975/10/4/045003. Rall DP, Oppelt WW, Patlak CS: Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci. 1962, 1: 43-48. 10.1016/0024-3205(62)90104-2. Patlak CS, Fenstermacher JD: Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884. Nicholson C, Phillips JM: Ion diffusion modified by tortuosity and volume fraction in the extracellular micro-environment of the rat cerebellum. J Physiol. 1981, 321: 225-257. 10.1113/jphysiol.1981.sp013981. Nicholson C, Tao L: Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 1993, 65: 2277-2290. 10.1016/S0006-3495(93)81324-9. Reulen HJ, Graham R, Spatz M, Klatzo I: Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg. 1977, 46: 24-35. 10.3171/jns.1977.46.1.0024. Reulen HJ, Tsuyumu M, Tack A, Fenske AR, Prioleau GR: Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg. 1978, 48: 754-764. 10.3171/jns.1978.48.5.0754. Reulen HJ: Bulk flow and diffusion revisited, and clinical applications. Brain Edema XIV. Edited by: Czernicki Z. 2010, Springer-Verlag, Vienna, 3-13. [Acta Neurochirurgica Supplementum Vol 106] Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH: Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994, 91: 2076-2080. 10.1073/pnas.91.6.2076. Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL: High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol. 1994, 266: R292-R305. Chen XM, Sarntinoranont M: Biphasic finite element model of solute transport for direct infusion into nervous tissue. Ann Biomed Eng. 2007, 35: 2145-2158. 10.1007/s10439-007-9371-1. Crone C, Olesen SP: Electrical-resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6. Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62. 10.1113/jphysiol.1990.sp018243. MacAulay N, Hamann S, Zeuthen T: Chloride transporters as water pumps: elements in a new model of epithelial water transport. Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases. Edited by: Alvarez-Leefmans FJ, Delpire E. 2009, Elsevier Science, Amsterdam, 547-568. Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508. Milhorat TH: Third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628. Milhorat TH: Cerebrospinal Fluid and the Brain Edemas. 1987, Neuroscience Society of New York, New York Scarff JE: Treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of choroid plexuses. J Neurosurg. 1970, 33: 1-18. 10.3171/jns.1970.33.1.0001. Warf BC: Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005, 103: 475-481. Warf BC: The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. World Neurosurg. 2013, 79 (S23): e13-e15. Zhu XL, Di Rocco C: Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Child’s Nerv Syst. 2013, 29: 35-42. 10.1007/s00381-012-1960-0. Pollay M: Overview of the CSF dual outflow system. Hydrocephalus. Edited by: Aygok GA, Rekate HL. 2012, Springer-Verlag, Vienna, 47-50. [Acta Neurochirurgica Supplementum, Vol 113] Bradbury MW, Cole DF: The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol. 1980, 299: 353-365. 10.1113/jphysiol.1980.sp013129. Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336. Bradbury MWB, Westrop RJ: Factors influencing exit of substances from cerebrospinal-fluid into deep cervical lymph of the rabbit. J Physiol. 1983, 339: 519-534. 10.1113/jphysiol.1983.sp014731. Kida S, Pantazis A, Weller RO: CSF drains directly from the subarachnoid space into nasal lymphatics in the rat - anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993, 19: 480-488. 10.1111/j.1365-2990.1993.tb00476.x. Johnston M, Papaiconomou C: Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002, 17: 227-230. Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M: Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Child’s Nerv Syst. 2004, 20: 29-36. 10.1007/s00381-003-0840-z. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D: Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004, 1: 2-10.1186/1743-8454-1-2. Johnston M, Zakharov A, Koh L, Armstrong D: Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol. 2005, 31: 632-640. 10.1111/j.1365-2990.2005.00679.x. Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M: Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol. 2006, 291: R1383-R1389. Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD: Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014, 11: 12-10.1186/2045-8118-11-12. Ekstedt J: CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry. 1977, 40: 105-119. 10.1136/jnnp.40.2.105. Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345. Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288. 10.1016/0306-4522(96)00281-3. Nagaraja TN, Patel P, Gorski M, Gorevic PD, Patlak CS, Fenstermacher JD: In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005, 2: 5-10.1186/1743-8454-2-5. Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981, 240: F319-F328. Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781. Milhorat TH: Choroid plexus and cerebrospinal fluid production. Science. 1969, 166: 1514-1516. 10.1126/science.166.3912.1514. Milhorat TH: Hydrocephalus and the Cerebrospinal Fluid. 1972, Williams & Wilkins, Baltimore Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038. Curl FD, Pollay M: Transport of water and electrolytes between brain and ventricular fluid in the rabbit. Exp Neurol. 1968, 20: 558-574. 10.1016/0014-4886(68)90109-X. Cserr HF, Cooper DN, Milhorat TH: Flow of cerebral interstitial fluid as indicated by removal of extracellular markers from rat caudate-nucleus. Exp Eye Res. 1977, 25: 461-473. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844. Yamada S, DePasquale M, Patlak CS, Cserr HF: Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol. 1991, 261: H1197-H1204. Curry F-RE, Renkin EM, Michel CC, Geiger SR: Mechanics and thermodynamics of transcapillary exchange. Handbook of Physiology Section 2 The Cardiovascular System. Volume 4 Part 1 Microcirculation. 1984, American Physiological Society, Bethesda, MD, 309-374. Groothuis DR, Vavra MW, Schlageter KE, Kang EW-Y, Itskovich AC, Hertzler S, Allen CV, Lipton HL: Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab. 2007, 27: 43-56. 10.1038/sj.jcbfm.9600315. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111- Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316. Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalized drainage of interstitial fluid and cerebrospinal-fluid from the rat-brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784. Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao LZ, Betensky RA, Frosch MP, Greenberg SM, Bacskai BJ: Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol. 2013, 126: 353-364. 10.1007/s00401-013-1145-2. Fenstermacher J: Comment after paper by Katzman. Symposium on the Blood-Brain Barrier Wates Foundation; Oxford. Edited by: Coxon RV. 1970, Truex, Oxford, 166- Levin VA, Fenstermacher JD, Patlak CS: Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am J Physiol. 1970, 219: 1528-1533. Levin E, Sisson WB: The penetration of radiolabeled substances into rabbit brain from subarachnoid space. Brain Res. 1972, 41: 145-153. 10.1016/0006-8993(72)90622-1. Milhorat TH: Some observations on circulation of phenosulfonpthalein in cerebrospinal fluid - normal flow and flow in hydrocephalus. J Neurosurg. 1970, 32: 522-528. 10.3171/jns.1970.32.5.0522. Pape LG, Katzman R: K42 distribution in brain during simultaneous ventriculocisternal and subarachnoid perfusion. Brain Res. 1972, 38: 49-69. 10.1016/0006-8993(72)90589-6. Bradbury MW, Segal MB, Wilson J: Transport of potassium at the blood-brain barrier. J Physiol. 1972, 221: 617-632. 10.1113/jphysiol.1972.sp009771. Weller RO, Djuanda E, Yow H-Y, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6. Wagner HJ, Pilgrim C, Brandl J: Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 1974, 27: 299-315. 10.1007/BF00690695. Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990, 52: 431-439. Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K: The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018. Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M: Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol. 2001, 280: R1573-R1581. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG: Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol. 2002, 282: R1593-R1599. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE: Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol. 1998, 153: 725-733. 10.1016/S0002-9440(10)65616-7. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol. 2006, 238: 962-974. 10.1016/j.jtbi.2005.07.005. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO: Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 2008, 18: 253-266. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO: Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon 4 allele. PLoS One. 2012, 7: e41636-10.1371/journal.pone.0041636. Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO: Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid- from the mouse brain. Aging Cell. 2013, 12: 224-236. 10.1111/acel.12045. Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799. 10.1148/radiology.163.3.3575734. Enzmann DR, Pelc NJ: Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991, 178: 467-474. 10.1148/radiology.178.2.1987610. Enzmann DR, Pelc NJ: Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol. 1993, 14: 1301-1307. discussion 1309-1310 Baledent O, Gondry-Jouet C, Meyer M-E, De Marco G, Le Gars D, Henry-Feugeas M-C, Idy-Peretti I: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004, 39: 45-55. 10.1097/01.rli.0000100892.87214.49. Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast - normal values, repeatability and CO(2) reactivity. Intracranial Pressure and Brain Monitoring XIII: Mechanisms and Treatment. Edited by: Manley G, Hemphill C, Stiver S. 2008, Springer, Vienna, 263-270. [Acta Neurochirurgica. Supplement, Vol. 102] Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050. Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6. Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041. Dandy WE, Blackfan KD: Internal hydrocephalus - an experimental, clinical and pathological study. Am J Dis Child. 1914, 8: 406-482. Milhorat TH, Clark RG, Hammock MK: Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg. 1970, 32: 390-399. 10.3171/jns.1970.32.4.0390. James AE, Novak G, Bahr AL, Burns B: Production of cerebrospinal-fluid in experimental communicating hydrocephalus. Exp Brain Res. 1977, 27: 553-557. Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133. Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405. 10.1148/radiology.183.2.1561340. Baledent O: Imaging of the cerebrospinal fluid circulation. Adult Hydrocephalus. Edited by: Rigamonti D. 2014, Cambridge University Press, Cambridge, 121-138. Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440. Bateman GA: Correction to “External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation”. Child’s Nerv Syst. 2011, 27: 2033-2034. 10.1007/s00381-011-1610-y. Strecker EP, James AE: Evaluation of cerebrospinal-fluid flow and absorption - clinical and experimental studies. Neuroradiology. 1973, 6: 200-205. 10.1007/BF00335324. James AE, Strecker EP, Sperber E, Flor WJ, Merz T, Burns B: An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiology. 1974, 111: 143-146. 10.1148/111.1.143. Strecker EP, Kelley JET, Merz T, James AE: Transventricular albumin absorption in communicating hydrocephalus - semiquantitative analysis of periventricular extracellular-space utilizing autoradiography. Arch Psychiatr Nervenkr. 1974, 218: 369-377. 10.1007/BF00342579. James AE, Flor WJ, Novak GR, Strecker EP, Burns B, Epstein M: Experimental hydrocephalus. Exp Eye Res. 1977, 25 (Suppl): 435-459. Maki Y, Kokubo Y, Nose T, Yoshii Y: Some characteristic findings of isotope cisternograms in children. J Neurosurg. 1976, 45: 56-59. 10.3171/jns.1976.45.1.0056. Blomquist HK, Sundin S, Ekstedt J: Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986, 49: 536-548. 10.1136/jnnp.49.5.536. Milhorat TH, Mosher MB, Hammock MK, Murphy CF: Evidence for choroid-plexus absorption in hydrocephalus. N Engl J Med. 1970, 283: 286-289. 10.1056/NEJM197008062830604. Wislocki GB, Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat. 1921, 29: 313-320. 10.1002/aja.1000290302. Eisenberg HM, McLennan JE, Welch K: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg. 1974, 41: 20-28. 10.3171/jns.1974.41.1.0020. Welch K, Sadler K: Permeability of the choroid plexus of the rabbit to several solutes. Am J Physiol. 1966, 210: 652-660. Wåhlin A, Ambarki K, Hauksson J, Birgander R, Malm J, Eklund A: Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging. 2012, 35: 1055-1062. 10.1002/jmri.23527. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992, 34: 370-380. 10.1007/BF00596493. Piechnik SK, Jezzard P, Byrne JV, Summers PE: Physiological component in background flow velocity in MR phase contrast measurements. Proc Intl Soc Mag Reson Med. 2008, 16: 2235- James AE, Flor WJ, Merz T, Strecker EP, Burns B: A pathophysiologic mechanism for ventricular entry of radiopharmaceutical and possible relation to chronic communicating hydrocephalus. Am J Roentgenol Radium Ther. 1974, 122: 38-43. 10.2214/ajr.122.1.38. Glymphatic system.http://en.wikipedia.org/wiki/Glymphatic_system, Konnikova M: Goodnight. Sleep clean. New York Times. 2014, New York Times Company, New York, 12 January 2014 SR1 Nedergaard M: Neuroscience. Garbage truck of the brain. Science. 2013, 340: 1529-1530. 10.1126/science.1240514. Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, Liao YH, Deane R, Nedergaard M: Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013, 33: 18190-18199. 10.1523/JNEUROSCI.1592-13.2013. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677. Yang LJ, Kress BT, Weber HJ, Thiyagarajan M, Wang BZ, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107. Papisov MI, Belov VV, Gannon KS: Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm. 2013, 10: 1522-1532. 10.1021/mp300474m. Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M: Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013, 3: 2582- Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224. Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468. The challenge presented by altered brain interstitial fluid dynamics during slow wave sleep.http://www.ucl.ac.uk/~ucgbarg/res/Phys2014_poster.pdf, Ranck JB: Electrical impedance in the subicular area of rats during paradoxical sleep. Exp Neurol. 1966, 16: 416-437. 10.1016/0014-4886(66)90107-5. Ranck JB: Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity. Exp Neurol. 1970, 27: 454-475. 10.1016/0014-4886(70)90107-X.