An area method for systems of univalent functions whose ranges do not overlap

Mathematische Zeitschrift - Tập 128 - Trang 23-33 - 1972
Duane W. DeTemple1
1Department of Pure and Applied Mathematics, Washington State University, Pullman, USA

Tài liệu tham khảo

Aharonov, D.: A generalization of a theorem of J.A. Jenkins. Math. Z.110, 218–222 (1969). Aharonov, D., Szargel, J.: On pairs of functions. Technion's Preprint Series No. MT-65, Technion-Israel Institute of Technology, Haifa. DeTemple, D. W.: On coefficient inequalities for bounded univalent functions. Ann. Acad. Sci. Fennicae Ser. A. I, no. 469, 1970. DeTemple, D. W.: Grunsky-Nehari inequalities for a subclass of bounded univalent functions. Trans. Amer. Math. Soc.159, 317–328 (1971). DeTemple, D. W.: Generalizations of the Grunsky-Nehari inequalities. Arch. Rat. Mech. Analysis44, 93–120 (1971). Gromova, L. L., Lebedev, N. A.: Non-overlapping domains that lie in a disc (Russian. English summary). Vestnik Leningrad Univ.24, 7–12 (1969). Guelfer, S. A.: On the class of regular functions which do not take on valuesw and-w. Rec. Math. (Mat. Sbornik), N. S.19 (61), 33–46 (1946). Hummel, J., Schiffer, M.: Coefficient inequalities for Bieberbach-Eilenberg functions. Arch. Rat. Mech. Analysis32, 87–99 (1969). Jakubowski, Z. J.: Les fonctions univalents,p-symmetric et bornées dans la cercle unité. Ann. Polon. Math.20, 119–148 (1968). Kühnau, R.: Über vier Klassen schlichter Funktionen. Math. Nachr.50, 17–26 (1971). Lebedev, N. A.: The area principle in the problem of non-overlapping regions. Doklady Akad. Nauk. SSSR132, 758–761 (1960)=Soviet Math. Doklady1, 640–643 (1960). Lebedev, N. A.: An application of the area principle to non-overlapping domains [Russian]. Trudy Mat. Inst. Steklov60, 211–231 (1961). Nehari, Z.: Some inequalities in the theory of functions. Trans. Amer. Math. Soc.75, 256–286 (1953). Nehari, Z.: Some functions-theoretic aspects of linear second-order differential equations. J. Analyse Math.18, 259–276 (1967). Schiffer, M., Tammi, O.: On bounded univalent functions which are close to identity. Ann. Acad. Sci. Fennicae Ser. A. I, no. 435, 1968. Schiffer, M., Tammi, O.: On the coefficient problem for bounded univalent functions. Trans. Amer. Math. Soc.140, 461–474 (1969).